Spaces:
Running
Running
| template <bool use_shared> | |
| static __global__ void cross_entropy_loss_f32( | |
| const float * __restrict__ logits, const float * __restrict__ labels, float * __restrict__ dst, const int nclasses, const int k) { | |
| extern __shared__ float tmp[]; | |
| logits += int64_t(blockIdx.x)*nclasses; | |
| labels += int64_t(blockIdx.x)*nclasses; | |
| // Find maximum for softmax: | |
| float max_logit = -INFINITY; | |
| for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { | |
| const float val = logits[i]; | |
| max_logit = fmaxf(max_logit, val); | |
| if (use_shared) { | |
| tmp[i] = val; | |
| } | |
| } | |
| max_logit = warp_reduce_max(max_logit); | |
| // Calculate log(softmax(logits)) which is just logits - max: | |
| float sum = 0.0f; | |
| for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { | |
| const float logit_i = use_shared ? tmp[i] : logits[i]; | |
| sum += expf(logit_i - max_logit); | |
| } | |
| sum = warp_reduce_sum(sum); | |
| sum = logf(sum); | |
| // log(exp(logits - max) / sum) = (logits - max) - log(sum) | |
| float loss = 0.0f; | |
| for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { | |
| const float logit_i = use_shared ? tmp[i] : logits[i]; | |
| loss += (logit_i - max_logit - sum) * labels[i]; | |
| } | |
| loss = -warp_reduce_sum(loss) / (float)k; | |
| if (threadIdx.x != 0) { | |
| return; | |
| } | |
| dst[blockIdx.x] = loss; | |
| } | |
| template <bool use_shared> | |
| static __global__ void cross_entropy_loss_back_f32( | |
| const float * __restrict__ grad, const float * __restrict__ logits, const float * __restrict__ labels, | |
| float * __restrict__ dst, const int nclasses) { | |
| extern __shared__ float tmp[]; | |
| logits += int64_t(blockIdx.x)*nclasses; | |
| labels += int64_t(blockIdx.x)*nclasses; | |
| dst += int64_t(blockIdx.x)*nclasses; | |
| float maxval = -INFINITY; | |
| for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { | |
| const float val = logits[i]; | |
| maxval = fmaxf(maxval, val); | |
| if (use_shared) { | |
| tmp[i] = val; | |
| } | |
| } | |
| maxval = warp_reduce_max(maxval); | |
| float sum = 0.0f; | |
| for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { | |
| const float val = expf((use_shared ? tmp[i] : logits[i]) - maxval); | |
| sum += val; | |
| if (use_shared) { | |
| tmp[i] = val; | |
| } else { | |
| dst[i] = val; | |
| } | |
| } | |
| sum = warp_reduce_sum(sum); | |
| const float sm_scale = 1.0f/sum; | |
| const float d_by_nrows = *grad/gridDim.x; | |
| for (int i = threadIdx.x; i < nclasses; i += WARP_SIZE) { | |
| const float val = use_shared ? tmp[i] : dst[i]; | |
| dst[i] = (val*sm_scale - labels[i])*d_by_nrows; | |
| } | |
| } | |
| void ggml_cuda_cross_entropy_loss(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * src0 = dst->src[0]; | |
| const ggml_tensor * src1 = dst->src[1]; | |
| GGML_ASSERT(src0->type == GGML_TYPE_F32); | |
| GGML_ASSERT(src1->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| GGML_ASSERT(ggml_is_contiguous(src0)); | |
| GGML_ASSERT(ggml_is_contiguous(src1)); | |
| GGML_ASSERT(ggml_is_contiguous(dst)); | |
| const int64_t ne00 = src0->ne[0]; | |
| const int64_t nrows = ggml_nrows(src0); | |
| const float * src0_d = (const float *) src0->data; | |
| const float * src1_d = (const float *) src1->data; | |
| float * dst_d = (float *) dst->data; | |
| ggml_cuda_pool & pool = ctx.pool(); | |
| cudaStream_t stream = ctx.stream(); | |
| const dim3 blocks_dim(WARP_SIZE, 1, 1); | |
| const dim3 blocks_num(nrows, 1, 1); | |
| const size_t nbytes_shared = ne00*sizeof(float); | |
| const int id = ggml_cuda_get_device(); | |
| const size_t smpbo = ggml_cuda_info().devices[id].smpbo; | |
| ggml_cuda_pool_alloc<float> dst_tmp(pool, blocks_num.x); | |
| if (nbytes_shared <= smpbo) { | |
| CUDA_SET_SHARED_MEMORY_LIMIT((cross_entropy_loss_f32<true>), smpbo); | |
| cross_entropy_loss_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows); | |
| } else { | |
| cross_entropy_loss_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(src0_d, src1_d, dst_tmp.ptr, ne00, nrows); | |
| } | |
| CUDA_CHECK(cudaGetLastError()); | |
| // Combine results from individual blocks: | |
| sum_f32_cuda(pool, dst_tmp.ptr, dst_d, blocks_num.x, stream); | |
| } | |
| void ggml_cuda_cross_entropy_loss_back(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * grad = dst->src[0]; | |
| const ggml_tensor * src0f = dst->src[1]; | |
| const ggml_tensor * src1f = dst->src[2]; | |
| GGML_ASSERT(src0f->type == GGML_TYPE_F32); | |
| GGML_ASSERT(src1f->type == GGML_TYPE_F32); | |
| GGML_ASSERT( grad->type == GGML_TYPE_F32); | |
| GGML_ASSERT( dst->type == GGML_TYPE_F32); | |
| GGML_ASSERT(ggml_is_scalar(grad)); | |
| GGML_ASSERT(ggml_is_contiguous(src0f)); | |
| GGML_ASSERT(ggml_is_contiguous(src1f)); | |
| GGML_ASSERT(ggml_is_contiguous(dst)); | |
| GGML_ASSERT(ggml_are_same_shape(src0f, src1f)); | |
| GGML_ASSERT(ggml_are_same_shape(src0f, dst)); | |
| const int64_t ne00 = src0f->ne[0]; | |
| const int64_t nrows = ggml_nrows(src0f); | |
| const float * grad_d = (const float *) grad->data; | |
| const float * src0f_d = (const float *) src0f->data; | |
| const float * src1f_d = (const float *) src1f->data; | |
| float * dst_d = (float *) dst->data; | |
| cudaStream_t stream = ctx.stream(); | |
| const dim3 blocks_dim(WARP_SIZE, 1, 1); | |
| const dim3 blocks_num(nrows, 1, 1); | |
| const size_t nbytes_shared = ne00*sizeof(float); | |
| const int id = ggml_cuda_get_device(); | |
| const size_t smpbo = ggml_cuda_info().devices[id].smpbo; | |
| if (nbytes_shared <= smpbo) { | |
| CUDA_SET_SHARED_MEMORY_LIMIT((cross_entropy_loss_back_f32<true>), smpbo); | |
| cross_entropy_loss_back_f32<true><<<blocks_num, blocks_dim, nbytes_shared, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00); | |
| } else { | |
| cross_entropy_loss_back_f32<false><<<blocks_num, blocks_dim, 0, stream>>>(grad_d, src0f_d, src1f_d, dst_d, ne00); | |
| } | |
| } | |