Spaces:
Sleeping
Sleeping
| // | |
| // llama_kv_cache_unified | |
| // | |
| llama_kv_cache_unified::llama_kv_cache_unified( | |
| const llama_model & model, | |
| layer_filter_cb && filter, | |
| ggml_type type_k, | |
| ggml_type type_v, | |
| bool v_trans, | |
| bool offload, | |
| uint32_t kv_size, | |
| uint32_t n_seq_max, | |
| uint32_t n_pad, | |
| uint32_t n_swa, | |
| llama_swa_type swa_type) : | |
| model(model), hparams(model.hparams), v_trans(v_trans), | |
| n_seq_max(n_seq_max), n_pad(n_pad), n_swa(n_swa), swa_type(swa_type) { | |
| GGML_ASSERT(kv_size % n_pad == 0); | |
| // TODO: this is temporary until we support passing reuse layer filters [KV_REUSE] | |
| auto n_layer_cache = hparams.n_layer; | |
| if (model.arch == LLM_ARCH_GEMMA3N) { | |
| n_layer_cache = 20; | |
| } | |
| // create a context for each buffer type | |
| std::map<ggml_backend_buffer_type_t, ggml_context *> ctx_map; | |
| auto ctx_for_buft = [&](ggml_backend_buffer_type_t buft) -> ggml_context * { | |
| auto it = ctx_map.find(buft); | |
| if (it == ctx_map.end()) { | |
| ggml_init_params params = { | |
| /*.mem_size =*/ size_t(2u*n_layer_cache*ggml_tensor_overhead()), | |
| /*.mem_buffer =*/ NULL, | |
| /*.no_alloc =*/ true, | |
| }; | |
| ggml_context * ctx = ggml_init(params); | |
| if (!ctx) { | |
| return nullptr; | |
| } | |
| ctx_map[buft] = ctx; | |
| ctxs.emplace_back(ctx); | |
| return ctx; | |
| } | |
| return it->second; | |
| }; | |
| head = 0; | |
| cells.resize(kv_size); | |
| for (uint32_t il = 0; il < n_layer_cache; il++) { | |
| if (filter && !filter(il)) { | |
| LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il); | |
| continue; | |
| } | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| const char * dev_name = "CPU"; | |
| ggml_backend_buffer_type_t buft = ggml_backend_cpu_buffer_type(); | |
| if (offload) { | |
| auto * dev = model.dev_layer(il); | |
| buft = ggml_backend_dev_buffer_type(dev); | |
| dev_name = ggml_backend_dev_name(dev); | |
| } | |
| LLAMA_LOG_DEBUG("%s: layer %3d: dev = %s\n", __func__, il, dev_name); | |
| ggml_context * ctx = ctx_for_buft(buft); | |
| if (!ctx) { | |
| throw std::runtime_error("failed to create ggml context for kv cache"); | |
| } | |
| ggml_tensor * k; | |
| ggml_tensor * v; | |
| k = ggml_new_tensor_2d(ctx, type_k, n_embd_k_gqa, kv_size); | |
| v = ggml_new_tensor_2d(ctx, type_v, n_embd_v_gqa, kv_size); | |
| ggml_format_name(k, "cache_k_l%d", il); | |
| ggml_format_name(v, "cache_v_l%d", il); | |
| map_layer_ids[il] = layers.size(); | |
| layers.push_back({ il, k, v }); | |
| } | |
| // TODO: this is temporary until we support passing reuse layer filters [KV_REUSE] | |
| if (model.arch == LLM_ARCH_GEMMA3N) { | |
| LLAMA_LOG_DEBUG("%s: GEMMA3N: reuse layers [%d, %d]\n", __func__, n_layer_cache, hparams.n_layer - 1); | |
| for (uint32_t il = n_layer_cache; il < hparams.n_layer; il++) { | |
| if (filter && !filter(il)) { | |
| LLAMA_LOG_DEBUG("%s: layer %3d: skipped\n", __func__, il); | |
| continue; | |
| } | |
| const bool is_swa = hparams.is_swa(il); | |
| const uint32_t il_reuse = n_layer_cache - (is_swa ? 2 : 1); | |
| GGML_ASSERT(map_layer_ids.find(il_reuse) != map_layer_ids.end()); | |
| map_layer_ids[il] = map_layer_ids[il_reuse]; | |
| LLAMA_LOG_DEBUG("%s: layer %3d: reuse layer %d, isw = %d\n", __func__, il, il_reuse, is_swa); | |
| } | |
| } | |
| // allocate tensors and initialize the buffers to avoid NaNs in the padding | |
| for (auto it : ctx_map) { | |
| auto * buft = it.first; | |
| auto * ctx = it.second; | |
| ggml_backend_buffer_t buf = ggml_backend_alloc_ctx_tensors_from_buft(ctx, buft); | |
| if (!buf) { | |
| throw std::runtime_error("failed to allocate buffer for kv cache"); | |
| } | |
| LLAMA_LOG_INFO("%s: %10s KV buffer size = %8.2f MiB\n", __func__, ggml_backend_buffer_name(buf), ggml_backend_buffer_get_size(buf)/1024.0/1024.0); | |
| ggml_backend_buffer_clear(buf, 0); | |
| bufs.emplace_back(buf); | |
| } | |
| { | |
| const size_t memory_size_k = size_k_bytes(); | |
| const size_t memory_size_v = size_v_bytes(); | |
| LLAMA_LOG_INFO("%s: size = %7.2f MiB (%6u cells, %3d layers, %2u seqs), K (%s): %7.2f MiB, V (%s): %7.2f MiB\n", __func__, | |
| (float)(memory_size_k + memory_size_v) / (1024.0f * 1024.0f), kv_size, (int) layers.size(), n_seq_max, | |
| ggml_type_name(type_k), (float)memory_size_k / (1024.0f * 1024.0f), | |
| ggml_type_name(type_v), (float)memory_size_v / (1024.0f * 1024.0f)); | |
| } | |
| const char * LLAMA_KV_CACHE_DEBUG = getenv("LLAMA_KV_CACHE_DEBUG"); | |
| debug = LLAMA_KV_CACHE_DEBUG ? atoi(LLAMA_KV_CACHE_DEBUG) : 0; | |
| const char * LLAMA_SET_ROWS = getenv("LLAMA_SET_ROWS"); | |
| supports_set_rows = LLAMA_SET_ROWS ? atoi(LLAMA_SET_ROWS) : 0; | |
| if (!supports_set_rows) { | |
| LLAMA_LOG_WARN("%s: LLAMA_SET_ROWS=0, using old ggml_cpy() method for backwards compatibility\n", __func__); | |
| } | |
| } | |
| void llama_kv_cache_unified::clear(bool data) { | |
| cells.reset(); | |
| head = 0; | |
| if (data) { | |
| for (auto & buf : bufs) { | |
| ggml_backend_buffer_clear(buf.get(), 0); | |
| } | |
| } | |
| } | |
| bool llama_kv_cache_unified::seq_rm(llama_seq_id seq_id, llama_pos p0, llama_pos p1) { | |
| uint32_t new_head = cells.size(); | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| if (seq_id >= 0) { | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (!cells.pos_in(i, p0, p1)) { | |
| continue; | |
| } | |
| if (cells.seq_has(i, seq_id) && cells.seq_rm(i, seq_id)) { | |
| if (new_head == cells.size()) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| } else { | |
| // match any sequence | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (!cells.pos_in(i, p0, p1)) { | |
| continue; | |
| } | |
| cells.rm(i); | |
| if (new_head == cells.size()) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != cells.size() && new_head < head) { | |
| head = new_head; | |
| } | |
| return true; | |
| } | |
| void llama_kv_cache_unified::seq_cp(llama_seq_id seq_id_src, llama_seq_id seq_id_dst, llama_pos p0, llama_pos p1) { | |
| if (seq_id_src == seq_id_dst) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (!cells.pos_in(i, p0, p1)) { | |
| continue; | |
| } | |
| if (cells.seq_has(i, seq_id_src)) { | |
| cells.seq_add(i, seq_id_dst); | |
| } | |
| } | |
| } | |
| void llama_kv_cache_unified::seq_keep(llama_seq_id seq_id) { | |
| uint32_t new_head = cells.size(); | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (cells.seq_keep(i, seq_id)) { | |
| if (new_head == cells.size()) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| if (new_head != cells.size() && new_head < head) { | |
| head = new_head; | |
| } | |
| } | |
| void llama_kv_cache_unified::seq_add(llama_seq_id seq_id, llama_pos p0, llama_pos p1, llama_pos shift) { | |
| if (shift == 0) { | |
| return; | |
| } | |
| uint32_t new_head = cells.size(); | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // If there is no range then return early to avoid looping over all cells. | |
| if (p0 == p1) { | |
| return; | |
| } | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (!cells.pos_in(i, p0, p1)) { | |
| continue; | |
| } | |
| if (cells.seq_has(i, seq_id)) { | |
| if (cells.pos_add(i, shift)) { | |
| if (new_head == cells.size()) { | |
| new_head = i; | |
| } | |
| } | |
| } | |
| } | |
| // If we freed up a slot, set head to it so searching can start there. | |
| // Otherwise we just start the next search from the beginning. | |
| head = new_head != cells.size() ? new_head : 0; | |
| } | |
| void llama_kv_cache_unified::seq_div(llama_seq_id seq_id, llama_pos p0, llama_pos p1, int d) { | |
| if (d == 1) { | |
| return; | |
| } | |
| if (p0 < 0) { | |
| p0 = 0; | |
| } | |
| if (p1 < 0) { | |
| p1 = std::numeric_limits<llama_pos>::max(); | |
| } | |
| // If there is no range then return early to avoid looping over the cache. | |
| if (p0 == p1) { | |
| return; | |
| } | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (!cells.pos_in(i, p0, p1)) { | |
| continue; | |
| } | |
| if (cells.seq_has(i, seq_id)) { | |
| cells.pos_div(i, d); | |
| } | |
| } | |
| } | |
| llama_pos llama_kv_cache_unified::seq_pos_min(llama_seq_id seq_id) const { | |
| return cells.seq_pos_min(seq_id); | |
| } | |
| llama_pos llama_kv_cache_unified::seq_pos_max(llama_seq_id seq_id) const { | |
| return cells.seq_pos_max(seq_id); | |
| } | |
| llama_memory_context_ptr llama_kv_cache_unified::init_batch( | |
| llama_batch_allocr & balloc, | |
| uint32_t n_ubatch, | |
| bool embd_all) { | |
| GGML_UNUSED(embd_all); | |
| do { | |
| balloc.split_reset(); | |
| std::vector<llama_ubatch> ubatches; | |
| while (true) { | |
| auto ubatch = balloc.split_simple(n_ubatch); | |
| if (ubatch.n_tokens == 0) { | |
| break; | |
| } | |
| ubatches.push_back(std::move(ubatch)); // NOLINT | |
| } | |
| if (balloc.get_n_used() < balloc.get_n_tokens()) { | |
| // failed to find a suitable split | |
| break; | |
| } | |
| auto sinfos = prepare(ubatches); | |
| if (sinfos.empty()) { | |
| break; | |
| } | |
| return std::make_unique<llama_kv_cache_unified_context>( | |
| this, std::move(sinfos), std::move(ubatches)); | |
| } while (false); | |
| return std::make_unique<llama_kv_cache_unified_context>(LLAMA_MEMORY_STATUS_FAILED_PREPARE); | |
| } | |
| llama_memory_context_ptr llama_kv_cache_unified::init_full() { | |
| return std::make_unique<llama_kv_cache_unified_context>(this); | |
| } | |
| llama_memory_context_ptr llama_kv_cache_unified::init_update(llama_context * lctx, bool optimize) { | |
| bool do_shift = get_has_shift(); | |
| defrag_info dinfo; | |
| // see if we need to defrag | |
| { | |
| bool do_defrag = optimize; | |
| const auto thold = lctx->get_cparams().defrag_thold; | |
| if (!do_defrag && thold > 0.0f) { | |
| const auto n_kv = cells.used_max_p1(); | |
| // - do not defrag small contexts (i.e. < 2048 tokens) | |
| // - count the padding towards the number of used tokens | |
| const float fragmentation = n_kv >= 2048 ? std::max(0.0f, 1.0f - (float(cells.get_used() + n_pad)/n_kv)) : 0.0f; | |
| if (fragmentation > thold) { | |
| LLAMA_LOG_DEBUG("%s: fragmentation: %.2f - requesting defrag\n", __func__, fragmentation); | |
| do_defrag = true; | |
| } | |
| } | |
| if (do_defrag) { | |
| dinfo = defrag_prepare(lctx->graph_max_nodes()); | |
| } | |
| } | |
| return std::make_unique<llama_kv_cache_unified_context>(this, lctx, do_shift, std::move(dinfo)); | |
| } | |
| llama_kv_cache_unified::slot_info_vec_t llama_kv_cache_unified::prepare(const std::vector<llama_ubatch> & ubatches) { | |
| llama_kv_cache_unified::slot_info_vec_t res; | |
| struct state { | |
| uint32_t head_old; // old position of the head, before placing the ubatch | |
| slot_info sinfo; // slot info for the ubatch | |
| llama_kv_cells_unified cells; // copy of the old cells, before placing the ubatch | |
| }; | |
| // remember the old state of the cells so we can restore it in the end | |
| std::vector<state> states; | |
| bool success = true; | |
| for (const auto & ubatch : ubatches) { | |
| // non-continuous slots require support for ggml_set_rows() | |
| const bool cont = supports_set_rows ? false : true; | |
| // only find a suitable slot for the ubatch. don't modify the cells yet | |
| const auto sinfo_new = find_slot(ubatch, cont); | |
| if (sinfo_new.empty()) { | |
| success = false; | |
| break; | |
| } | |
| // remeber the position that we found | |
| res.push_back(sinfo_new); | |
| // store the old state of the cells in the recovery stack | |
| states.push_back({head, sinfo_new, cells.cp(sinfo_new.idxs)}); | |
| // now emplace the ubatch | |
| apply_ubatch(sinfo_new, ubatch); | |
| } | |
| // iterate backwards and restore the cells to their original state | |
| for (auto it = states.rbegin(); it != states.rend(); ++it) { | |
| cells.set(it->sinfo.idxs, it->cells); | |
| head = it->head_old; | |
| } | |
| if (!success) { | |
| return {}; | |
| } | |
| return res; | |
| } | |
| bool llama_kv_cache_unified::update(llama_context * lctx, bool do_shift, const defrag_info & dinfo) { | |
| bool updated = false; | |
| auto * sched = lctx->get_sched(); | |
| if (do_shift) { | |
| if (!get_can_shift()) { | |
| GGML_ABORT("The current KV cache / model configuration does not support K-shift"); | |
| } | |
| LLAMA_LOG_DEBUG("%s: applying K-shift\n", __func__); | |
| // apply K-shift if needed | |
| if (hparams.rope_type != LLAMA_ROPE_TYPE_NONE) { | |
| ggml_backend_sched_reset(sched); | |
| auto * gf = lctx->graph_init(); | |
| auto res = build_graph_shift(lctx->get_cparams(), lctx->get_ctx_compute(), gf); | |
| if (!res) { | |
| LLAMA_LOG_ERROR("%s: failed to build graph for K-shift\n", __func__); | |
| return updated; | |
| } | |
| if (!ggml_backend_sched_alloc_graph(sched, gf)) { | |
| LLAMA_LOG_ERROR("%s: failed to allocate compute graph for K-shift\n", __func__); | |
| return updated; | |
| } | |
| res->set_inputs(nullptr); | |
| if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) { | |
| LLAMA_LOG_ERROR("%s: failed to compute K-shift\n", __func__); | |
| return updated; | |
| } | |
| updated = true; | |
| } | |
| cells.reset_shift(); | |
| } | |
| if (!dinfo.empty()) { | |
| LLAMA_LOG_DEBUG("%s: defragmenting KV cache\n", __func__); | |
| // apply moves: | |
| { | |
| const auto n_kv = dinfo.ids.size(); | |
| for (uint32_t i = 0; i < n_kv; ++i) { | |
| assert(dinfo.ids[i] <= n_kv); | |
| if (dinfo.ids[i] == n_kv || dinfo.ids[i] == i) { | |
| continue; | |
| } | |
| cells.mv(i, dinfo.ids[i]); | |
| } | |
| // reset the head so we can find the first free slot during the next ubatch | |
| head = 0; | |
| } | |
| ggml_backend_sched_reset(sched); | |
| auto * gf = lctx->graph_init(); | |
| auto res = build_graph_defrag(lctx->get_cparams(), lctx->get_ctx_compute(), gf, dinfo); | |
| if (!res) { | |
| LLAMA_LOG_ERROR("%s: failed to build graph for defrag\n", __func__); | |
| return updated; | |
| } | |
| if (!ggml_backend_sched_alloc_graph(sched, gf)) { | |
| LLAMA_LOG_ERROR("%s: failed to allocate compute graph for defrag\n", __func__); | |
| return updated; | |
| } | |
| res->set_inputs(nullptr); | |
| if (lctx->graph_compute(gf, false) != GGML_STATUS_SUCCESS) { | |
| LLAMA_LOG_ERROR("%s: failed to compute defrag\n", __func__); | |
| return updated; | |
| } | |
| updated = true; | |
| } | |
| return updated; | |
| } | |
| llama_kv_cache_unified::slot_info llama_kv_cache_unified::find_slot(const llama_ubatch & ubatch, bool cont) const { | |
| const uint32_t n_tokens = ubatch.n_tokens; | |
| uint32_t head_cur = this->head; | |
| // if we have enough unused cells before the current head -> | |
| // better to start searching from the beginning of the cache, hoping to fill it | |
| if (head_cur > cells.get_used() + 2*ubatch.n_tokens) { | |
| head_cur = 0; | |
| } | |
| if (n_tokens > cells.size()) { | |
| LLAMA_LOG_ERROR("%s: n_tokens = %d > size = %u\n", __func__, n_tokens, cells.size()); | |
| return { }; | |
| } | |
| if (debug > 0) { | |
| LLAMA_LOG_DEBUG("%s: n = %5d, used = %5d, head = %5d, size = %5d, n_swa = %5d\n", __func__, cells.used_max_p1(), cells.get_used(), head, get_size(), n_swa); | |
| if ((debug == 2 && n_swa > 0) || debug > 2) { | |
| std::string ss; | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (cells.is_empty(i)) { | |
| ss += '.'; | |
| } else { | |
| assert(cells.seq_count(i) >= 1); | |
| if (cells.seq_count(i) == 1) { | |
| ss += std::to_string(cells.seq_get(i)); | |
| } else { | |
| ss += 'M'; | |
| } | |
| } | |
| if (i%256 == 255) { | |
| ss += " *"; | |
| ss += '\n'; | |
| } | |
| } | |
| LLAMA_LOG_DEBUG("\n%s\n", ss.c_str()); | |
| } | |
| if ((debug == 2 && n_swa > 0) || debug > 2) { | |
| std::string ss; | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| std::string cur; | |
| if (cells.is_empty(i)) { | |
| cur = '.'; | |
| } else { | |
| cur = std::to_string(cells.pos_get(i)); | |
| } | |
| const int n = cur.size(); | |
| for (int j = 0; j < 5 - n; ++j) { | |
| cur += ' '; | |
| } | |
| ss += cur; | |
| if (i%256 == 255) { | |
| ss += " *"; | |
| } | |
| if (i%64 == 63) { | |
| ss += '\n'; | |
| } | |
| } | |
| LLAMA_LOG_DEBUG("\n%s\n", ss.c_str()); | |
| } | |
| for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { | |
| if (cells.seq_pos_min(s) < 0) { | |
| continue; | |
| } | |
| LLAMA_LOG_DEBUG("%s: min[%d] = %5d, max[%d] = %5d\n", __func__, s, cells.seq_pos_min(s), s, cells.seq_pos_max(s)); | |
| } | |
| } | |
| uint32_t n_tested = 0; | |
| // for continuous slots, we test that all tokens in the ubatch fit, starting from the current head | |
| // for non-continuous slots, we test the tokens one by one | |
| const uint32_t n_test = cont ? n_tokens : 1; | |
| slot_info res; | |
| auto & idxs = res.idxs; | |
| idxs.reserve(n_tokens); | |
| while (true) { | |
| if (head_cur + n_test > cells.size()) { | |
| n_tested += cells.size() - head_cur; | |
| head_cur = 0; | |
| continue; | |
| } | |
| for (uint32_t i = 0; i < n_test; i++) { | |
| const auto idx = head_cur; | |
| //const llama_pos pos = ubatch.pos[i]; | |
| //const llama_seq_id seq_id = ubatch.seq_id[i][0]; | |
| // can we use this cell? either: | |
| // - the cell is empty | |
| // - the cell is occupied only by one sequence: | |
| // - (disabled) mask causally, if the sequence is the same as the one we are inserting | |
| // - mask SWA, using current max pos for that sequence in the cache | |
| // always insert in the cell with minimum pos | |
| bool can_use = cells.is_empty(idx); | |
| if (!can_use && cells.seq_count(idx) == 1) { | |
| const llama_pos pos_cell = cells.pos_get(idx); | |
| // (disabled) causal mask | |
| // note: it's better to purge any "future" tokens beforehand | |
| //if (cells.seq_has(idx, seq_id)) { | |
| // can_use = pos_cell >= pos; | |
| //} | |
| if (!can_use) { | |
| const llama_seq_id seq_id_cell = cells.seq_get(idx); | |
| // SWA mask | |
| if (is_masked_swa(pos_cell, cells.seq_pos_max(seq_id_cell) + 1)) { | |
| can_use = true; | |
| } | |
| } | |
| } | |
| head_cur++; | |
| n_tested++; | |
| if (can_use) { | |
| idxs.push_back(idx); | |
| } else { | |
| break; | |
| } | |
| } | |
| if (idxs.size() == n_tokens) { | |
| break; | |
| } | |
| if (cont) { | |
| idxs.clear(); | |
| } | |
| if (n_tested >= cells.size()) { | |
| //LLAMA_LOG_ERROR("%s: failed to find a slot for %d tokens\n", __func__, n_tokens); | |
| return { }; | |
| } | |
| } | |
| // we didn't find a suitable slot - return empty result | |
| if (idxs.size() < n_tokens) { | |
| res.clear(); | |
| } | |
| return res; | |
| } | |
| void llama_kv_cache_unified::apply_ubatch(const slot_info & sinfo, const llama_ubatch & ubatch) { | |
| // keep track of the max sequence position that we would overwrite with this ubatch | |
| // for non-SWA cache, this would be always empty | |
| llama_seq_id seq_pos_max_rm[LLAMA_MAX_SEQ]; | |
| for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { | |
| seq_pos_max_rm[s] = -1; | |
| } | |
| assert(ubatch.n_tokens == sinfo.idxs.size()); | |
| for (uint32_t i = 0; i < ubatch.n_tokens; ++i) { | |
| const auto idx = sinfo.idxs.at(i); | |
| if (!cells.is_empty(idx)) { | |
| assert(cells.seq_count(idx) == 1); | |
| const llama_seq_id seq_id = cells.seq_get(idx); | |
| const llama_pos pos = cells.pos_get(idx); | |
| seq_pos_max_rm[seq_id] = std::max(seq_pos_max_rm[seq_id], pos); | |
| cells.rm(idx); | |
| } | |
| cells.pos_set(idx, ubatch.pos[i]); | |
| for (int32_t s = 0; s < ubatch.n_seq_id[i]; s++) { | |
| cells.seq_add(idx, ubatch.seq_id[i][s]); | |
| } | |
| } | |
| // note: we want to preserve the invariant that all positions between [pos_min, pos_max] for each sequence | |
| // will be present in the cache. so we have to purge any position which is less than those we would overwrite | |
| // ref: https://github.com/ggml-org/llama.cpp/pull/13746#issuecomment-2916057092 | |
| for (int s = 0; s < LLAMA_MAX_SEQ; ++s) { | |
| if (seq_pos_max_rm[s] == -1) { | |
| continue; | |
| } | |
| if (cells.seq_pos_min(s) <= seq_pos_max_rm[s]) { | |
| LLAMA_LOG_DEBUG("%s: purging positions [%d, %d] of sequence %d from KV cache\n", | |
| __func__, cells.seq_pos_min(s), seq_pos_max_rm[s], s); | |
| seq_rm(s, cells.seq_pos_min(s), seq_pos_max_rm[s] + 1); | |
| } | |
| } | |
| // move the head at the end of the slot | |
| head = sinfo.idxs.back() + 1; | |
| } | |
| bool llama_kv_cache_unified::get_can_shift() const { | |
| return true; | |
| } | |
| uint32_t llama_kv_cache_unified::get_size() const { | |
| return cells.size(); | |
| } | |
| bool llama_kv_cache_unified::get_has_shift() const { | |
| return cells.get_has_shift(); | |
| } | |
| uint32_t llama_kv_cache_unified::get_n_kv() const { | |
| return std::min(cells.size(), std::max(n_pad, GGML_PAD(cells.used_max_p1(), n_pad))); | |
| } | |
| ggml_tensor * llama_kv_cache_unified::get_k(ggml_context * ctx, int32_t il, uint32_t n_kv) const { | |
| const int32_t ikv = map_layer_ids.at(il); | |
| auto * k = layers[ikv].k; | |
| return ggml_view_3d(ctx, k, | |
| hparams.n_embd_head_k, hparams.n_head_kv(il), n_kv, | |
| ggml_row_size(k->type, hparams.n_embd_head_k), | |
| ggml_row_size(k->type, hparams.n_embd_k_gqa(il)), | |
| 0); | |
| } | |
| ggml_tensor * llama_kv_cache_unified::get_v(ggml_context * ctx, int32_t il, uint32_t n_kv) const { | |
| const int32_t ikv = map_layer_ids.at(il); | |
| auto * v = layers[ikv].v; | |
| if (!v_trans) { | |
| // note: v->nb[1] <= v->nb[2] | |
| return ggml_view_3d(ctx, v, | |
| hparams.n_embd_head_v, hparams.n_head_kv(il), n_kv, | |
| ggml_row_size(v->type, hparams.n_embd_head_v), // v->nb[1] | |
| ggml_row_size(v->type, hparams.n_embd_v_gqa(il)), // v->nb[2] | |
| 0); | |
| } | |
| // note: v->nb[1] > v->nb[2] | |
| return ggml_view_3d(ctx, v, | |
| n_kv, hparams.n_head_kv(il), hparams.n_embd_head_v, | |
| ggml_row_size(v->type, v->ne[1]*hparams.n_embd_head_v), // v->nb[1] | |
| ggml_row_size(v->type, v->ne[1]), // v->nb[2] | |
| 0); | |
| } | |
| ggml_tensor * llama_kv_cache_unified::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il, const slot_info & sinfo) const { | |
| const int32_t ikv = map_layer_ids.at(il); | |
| auto * k = layers[ikv].k; | |
| const int64_t n_embd_k_gqa = k->ne[0]; | |
| const int64_t n_tokens = k_cur->ne[2]; | |
| k_cur = ggml_reshape_2d(ctx, k_cur, k->ne[0], n_tokens); | |
| if (k_idxs && supports_set_rows) { | |
| return ggml_set_rows(ctx, k, k_cur, k_idxs); | |
| } | |
| // TODO: fallback to old ggml_cpy() method for backwards compatibility | |
| // will be removed when ggml_set_rows() is adopted by all backends | |
| ggml_tensor * k_view = ggml_view_1d(ctx, k, | |
| n_tokens*n_embd_k_gqa, | |
| ggml_row_size(k->type, n_embd_k_gqa)*sinfo.head()); | |
| return ggml_cpy(ctx, k_cur, k_view); | |
| } | |
| ggml_tensor * llama_kv_cache_unified::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il, const slot_info & sinfo) const { | |
| const int32_t ikv = map_layer_ids.at(il); | |
| auto * v = layers[ikv].v; | |
| const int64_t n_embd_v_gqa = v->ne[0]; | |
| const int64_t n_tokens = v_cur->ne[2]; | |
| v_cur = ggml_reshape_2d(ctx, v_cur, n_embd_v_gqa, n_tokens); | |
| if (v_idxs && supports_set_rows) { | |
| if (!v_trans) { | |
| return ggml_set_rows(ctx, v, v_cur, v_idxs); | |
| } | |
| // the row becomes a single element | |
| ggml_tensor * v_view = ggml_reshape_3d(ctx, v, 1, v->ne[1], v->ne[0]); | |
| // note: the V cache is transposed when not using flash attention | |
| v_cur = ggml_permute(ctx, ggml_reshape_3d(ctx, v_cur, v_cur->ne[0], 1, v_cur->ne[1]), 2, 0, 1, 3); | |
| // note: we can be more explicit here at the cost of extra cont | |
| // however, above we take advantage that a row of single element is always continuous regardless of the row stride | |
| //v_cur = ggml_transpose(ctx, v_cur); | |
| //v_cur = ggml_cont_3d(ctx, v_cur, 1, v_cur->ne[0], v_cur->ne[1]); | |
| // we broadcast the KV indices n_embd_v_gqa times | |
| // v [1, n_kv, n_embd_v_gqa] | |
| // v_cur [1, n_tokens, n_embd_v_gqa] | |
| // v_idxs [n_tokens, 1, 1] | |
| return ggml_set_rows(ctx, v_view, v_cur, v_idxs); | |
| } | |
| // TODO: fallback to old ggml_cpy() method for backwards compatibility | |
| // will be removed when ggml_set_rows() is adopted by all backends | |
| ggml_tensor * v_view = nullptr; | |
| if (!v_trans) { | |
| v_view = ggml_view_1d(ctx, v, | |
| n_tokens*n_embd_v_gqa, | |
| ggml_row_size(v->type, n_embd_v_gqa)*sinfo.head()); | |
| } else { | |
| v_cur = ggml_transpose(ctx, v_cur); | |
| v_view = ggml_view_2d(ctx, v, n_tokens, n_embd_v_gqa, | |
| (v->ne[1] )*ggml_element_size(v), | |
| (sinfo.head())*ggml_element_size(v)); | |
| } | |
| return ggml_cpy(ctx, v_cur, v_view); | |
| } | |
| ggml_tensor * llama_kv_cache_unified::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { | |
| const uint32_t n_tokens = ubatch.n_tokens; | |
| ggml_tensor * k_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens); | |
| ggml_set_input(k_idxs); | |
| return k_idxs; | |
| } | |
| ggml_tensor * llama_kv_cache_unified::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { | |
| const uint32_t n_tokens = ubatch.n_tokens; | |
| ggml_tensor * v_idxs = ggml_new_tensor_1d(ctx, GGML_TYPE_I64, n_tokens); | |
| ggml_set_input(v_idxs); | |
| return v_idxs; | |
| } | |
| void llama_kv_cache_unified::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const { | |
| if (!supports_set_rows) { | |
| return; | |
| } | |
| const uint32_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); | |
| int64_t * data = (int64_t *) dst->data; | |
| for (int64_t i = 0; i < n_tokens; ++i) { | |
| data[i] = sinfo.idxs.at(i); | |
| } | |
| } | |
| void llama_kv_cache_unified::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch, const slot_info & sinfo) const { | |
| if (!supports_set_rows) { | |
| return; | |
| } | |
| const uint32_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); | |
| int64_t * data = (int64_t *) dst->data; | |
| for (int64_t i = 0; i < n_tokens; ++i) { | |
| data[i] = sinfo.idxs.at(i); | |
| } | |
| } | |
| void llama_kv_cache_unified::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { | |
| const uint32_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); | |
| float * data = (float *) dst->data; | |
| const int64_t n_kv = dst->ne[0]; | |
| // Use only the previous KV cells of the correct sequence for each token of the ubatch. | |
| // It's assumed that if a token in the batch has multiple sequences, they are equivalent. | |
| // Example with a cache of 10 tokens, 2 tokens populated in cache and 3 tokens in batch: | |
| // Causal mask: | |
| // xxx------- | |
| // xxxx------ | |
| // xxxxx----- | |
| // Non-causal mask: | |
| // xxxxx----- | |
| // xxxxx----- | |
| // xxxxx----- | |
| // To visualize the mask, see https://github.com/ggml-org/llama.cpp/pull/12615 | |
| for (uint32_t h = 0; h < 1; ++h) { | |
| for (uint32_t i = 0; i < n_tokens; ++i) { | |
| const llama_seq_id seq_id = ubatch->seq_id[i][0]; | |
| const llama_pos p1 = ubatch->pos[i]; | |
| for (uint32_t j = 0; j < n_kv; ++j) { | |
| float f = 0.0f; | |
| bool masked = false; | |
| if (cells.is_empty(j)) { | |
| masked = true; | |
| } else { | |
| const llama_pos p0 = cells.pos_get(j); | |
| // mask the token if not the same sequence | |
| masked = masked || (!cells.seq_has(j, seq_id)); | |
| // mask future tokens | |
| masked = masked || (causal_attn && p0 > p1); | |
| // apply SWA if any | |
| masked = masked || (is_masked_swa(p0, p1)); | |
| if (!masked && hparams.use_alibi) { | |
| f = -std::abs(p0 - p1); | |
| } | |
| } | |
| if (masked) { | |
| f = -INFINITY; | |
| } | |
| data[h*(n_kv*n_tokens) + i*n_kv + j] = f; | |
| } | |
| } | |
| // mask padded tokens | |
| if (data) { | |
| for (uint32_t i = n_tokens; i < GGML_PAD(n_tokens, GGML_KQ_MASK_PAD); ++i) { | |
| for (uint32_t j = 0; j < n_kv; ++j) { | |
| data[h*(n_kv*n_tokens) + i*n_kv + j] = -INFINITY; | |
| } | |
| } | |
| } | |
| } | |
| } | |
| void llama_kv_cache_unified::set_input_k_shift(ggml_tensor * dst) const { | |
| GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); | |
| int32_t * data = (int32_t *) dst->data; | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| data[i] = cells.is_empty(i) ? 0 : cells.get_shift(i); | |
| } | |
| } | |
| void llama_kv_cache_unified::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { | |
| const int64_t n_tokens = ubatch->n_tokens; | |
| GGML_ASSERT(ggml_backend_buffer_is_host(dst->buffer)); | |
| GGML_ASSERT(!ubatch->equal_seqs); // TODO: use ubatch->n_seqs instead of failing | |
| int32_t * data = (int32_t *) dst->data; | |
| const int32_t n_kv = dst->ne[0]; | |
| for (int h = 0; h < 1; ++h) { | |
| for (int i = 0; i < n_tokens; ++i) { | |
| for (int j = 0; j < n_kv; ++j) { | |
| // the position when the cells is empty is irrelevant - it will be masked out later in the attention | |
| const llama_pos p0 = cells.is_empty(j) ? -1 : cells.pos_get(j); | |
| data[h*(n_kv*n_tokens) + i*n_kv + j] = llama_relative_position_bucket(p0, ubatch->pos[i], hparams.n_rel_attn_bkts, false); | |
| } | |
| } | |
| } | |
| } | |
| size_t llama_kv_cache_unified::total_size() const { | |
| size_t size = 0; | |
| for (const auto & buf : bufs) { | |
| size += ggml_backend_buffer_get_size(buf.get()); | |
| } | |
| return size; | |
| } | |
| size_t llama_kv_cache_unified::size_k_bytes() const { | |
| size_t size_k_bytes = 0; | |
| for (const auto & layer : layers) { | |
| size_k_bytes += ggml_nbytes(layer.k); | |
| } | |
| return size_k_bytes; | |
| } | |
| size_t llama_kv_cache_unified::size_v_bytes() const { | |
| size_t size_v_bytes = 0; | |
| for (const auto & layer : layers) { | |
| size_v_bytes += ggml_nbytes(layer.v); | |
| } | |
| return size_v_bytes; | |
| } | |
| ggml_tensor * llama_kv_cache_unified::build_rope_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_tensor * cur, | |
| ggml_tensor * shift, | |
| ggml_tensor * factors, | |
| float freq_base, | |
| float freq_scale) const { | |
| const auto & n_ctx_orig = cparams.n_ctx_orig_yarn; | |
| const auto & yarn_ext_factor = cparams.yarn_ext_factor; | |
| const auto & yarn_beta_fast = cparams.yarn_beta_fast; | |
| const auto & yarn_beta_slow = cparams.yarn_beta_slow; | |
| const auto & n_rot = hparams.n_rot; | |
| const auto & rope_type = hparams.rope_type == LLAMA_ROPE_TYPE_MROPE | |
| // @ngxson : this is a workaround | |
| // for M-RoPE, we want to rotate the whole vector when doing KV shift | |
| // a normal RoPE should work, we just need to use the correct ordering | |
| // ref: https://github.com/ggml-org/llama.cpp/pull/13870 | |
| ? LLAMA_ROPE_TYPE_NEOX | |
| : hparams.rope_type; | |
| // See llm_build_deepseek2() for why attn_factor has to be scaled for YaRN RoPE to work correctly. | |
| // See https://github.com/ggerganov/llama.cpp/discussions/7416 for detailed explanation. | |
| const float yarn_attn_factor = model.arch == LLM_ARCH_DEEPSEEK2 | |
| ? 1.0f / (1.0f + 0.1f * logf(1.0f / freq_scale)) | |
| : cparams.yarn_attn_factor; | |
| ggml_tensor * tmp; | |
| if (ggml_is_quantized(cur->type)) { | |
| // dequantize to f32 -> RoPE -> quantize back | |
| tmp = ggml_cast(ctx, cur, GGML_TYPE_F32); | |
| tmp = ggml_rope_ext(ctx, tmp, | |
| shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, | |
| yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); | |
| tmp = ggml_cpy(ctx, tmp, cur); | |
| } else { | |
| // we rotate only the first n_rot dimensions | |
| tmp = ggml_rope_ext_inplace(ctx, cur, | |
| shift, factors, n_rot, rope_type, n_ctx_orig, freq_base, freq_scale, | |
| yarn_ext_factor, yarn_attn_factor, yarn_beta_fast, yarn_beta_slow); | |
| } | |
| return tmp; | |
| } | |
| class llm_graph_input_k_shift : public llm_graph_input_i { | |
| public: | |
| llm_graph_input_k_shift(const llama_kv_cache_unified * kv_self) : kv_self(kv_self) {} | |
| virtual ~llm_graph_input_k_shift() = default; | |
| void set_input(const llama_ubatch * ubatch) override; | |
| ggml_tensor * k_shift; // I32 [kv_size] | |
| const llama_kv_cache_unified * kv_self; | |
| }; | |
| void llm_graph_input_k_shift::set_input(const llama_ubatch * ubatch) { | |
| GGML_UNUSED(ubatch); | |
| if (k_shift) { | |
| kv_self->set_input_k_shift(k_shift); | |
| } | |
| } | |
| llm_graph_result_ptr llama_kv_cache_unified::build_graph_shift( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_cgraph * gf) const { | |
| auto res = std::make_unique<llm_graph_result>(); | |
| const auto & n_embd_head_k = hparams.n_embd_head_k; | |
| //const auto & n_embd_head_v = hparams.n_embd_head_v; | |
| auto inp = std::make_unique<llm_graph_input_k_shift>(this); | |
| inp->k_shift = ggml_new_tensor_1d(ctx, GGML_TYPE_I32, cells.size()); | |
| ggml_set_input(inp->k_shift); | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const int64_t n_head_kv = hparams.n_head_kv(il); | |
| const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| const float freq_base_l = model.get_rope_freq_base (cparams, il); | |
| const float freq_scale_l = model.get_rope_freq_scale(cparams, il); | |
| ggml_tensor * rope_factors = model.get_rope_factors(cparams, il); | |
| ggml_tensor * k = | |
| ggml_view_3d(ctx, layer.k, | |
| n_embd_head_k, n_head_kv, cells.size(), | |
| ggml_row_size(layer.k->type, n_embd_head_k), | |
| ggml_row_size(layer.k->type, n_embd_k_gqa), | |
| 0); | |
| ggml_tensor * cur = build_rope_shift(cparams, ctx, k, inp->k_shift, rope_factors, freq_base_l, freq_scale_l); | |
| ggml_build_forward_expand(gf, cur); | |
| } | |
| res->add_input(std::move(inp)); | |
| return res; | |
| } | |
| llm_graph_result_ptr llama_kv_cache_unified::build_graph_defrag( | |
| const llama_cparams & cparams, | |
| ggml_context * ctx, | |
| ggml_cgraph * gf, | |
| const defrag_info & dinfo) const { | |
| auto res = std::make_unique<llm_graph_result>(); | |
| const auto & ids = dinfo.ids; | |
| // CPU defrag | |
| // | |
| // TODO: optimizations are possible: | |
| // - multiple threads | |
| // - avoid copying to the host memory when already there | |
| // | |
| // likely not worth the effort, as we have ggml_graph based defrag | |
| // | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(); | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(); | |
| const uint32_t kv_size = size; | |
| std::vector<uint8_t> buf_k; | |
| std::vector<uint8_t> buf_v; | |
| for (uint32_t il = 0; il < n_layer; ++il) { | |
| const size_t k_size_row = ggml_row_size(k_l[il]->type, n_embd_k_gqa); | |
| const size_t k_size = ggml_row_size(k_l[il]->type, n_embd_k_gqa*kv_size); | |
| const size_t v_size_el = ggml_type_size(v_l[il]->type); | |
| const size_t v_size = ggml_row_size (v_l[il]->type, n_embd_v_gqa*kv_size); | |
| buf_k.resize(k_size); | |
| buf_v.resize(v_size); | |
| ggml_backend_tensor_get(k_l[il], buf_k.data(), 0, buf_k.size()); | |
| ggml_backend_tensor_get(v_l[il], buf_v.data(), 0, buf_v.size()); | |
| // batch move [i, i+nm) to [id, id+nm) | |
| // note: cells can move only to a lower index | |
| for (uint32_t i = 0; i < n_kv; ++i) { | |
| const uint32_t id = ids[i]; | |
| if (i == id || id == n_kv) { | |
| continue; | |
| } | |
| uint32_t nm = 1; | |
| while (i + nm < n_kv && ids[i + nm] == id + nm) { | |
| nm++; | |
| } | |
| // move keys | |
| { | |
| const int64_t os = i*k_size_row; | |
| const int64_t od = id*k_size_row; | |
| memcpy(buf_k.data() + od, buf_k.data() + os, nm*k_size_row); | |
| } | |
| // move values (note: they are transposed) | |
| { | |
| const int64_t os = i; | |
| const int64_t od = id; | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| memcpy(buf_v.data() + (od + j*kv_size)*v_size_el, buf_v.data() + (os + j*kv_size)*v_size_el, nm*v_size_el); | |
| } | |
| } | |
| i += nm - 1; | |
| } | |
| ggml_backend_tensor_set(k_l[il], buf_k.data(), 0, buf_k.size()); | |
| ggml_backend_tensor_set(v_l[il], buf_v.data(), 0, buf_v.size()); | |
| } | |
| for (uint32_t i = 0; i < ids.size(); ++i) { | |
| const uint32_t id = ids[i]; | |
| if (i == id || id == ids.size()) { | |
| continue; | |
| } | |
| uint32_t nm = 1; | |
| while (i + nm < ids.size() && ids[i + nm] == id + nm) { | |
| nm++; | |
| } | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const int64_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| const int64_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| ggml_tensor * view_k_src = ggml_view_2d(ctx, layer.k, | |
| n_embd_k_gqa, nm, | |
| ggml_row_size(layer.k->type, n_embd_k_gqa), | |
| ggml_row_size(layer.k->type, n_embd_k_gqa*i)); | |
| ggml_tensor * view_k_dst = ggml_view_2d(ctx, layer.k, | |
| n_embd_k_gqa, nm, | |
| ggml_row_size(layer.k->type, n_embd_k_gqa), | |
| ggml_row_size(layer.k->type, n_embd_k_gqa*id)); | |
| ggml_tensor * view_v_src; | |
| ggml_tensor * view_v_dst; | |
| if (cparams.flash_attn) { | |
| // NOTE: the V cache is not transposed when using flash attention | |
| view_v_src = ggml_view_2d(ctx, layer.v, | |
| n_embd_v_gqa, nm, | |
| ggml_row_size(layer.v->type, n_embd_v_gqa), | |
| ggml_row_size(layer.v->type, n_embd_v_gqa*i)); | |
| view_v_dst = ggml_view_2d(ctx, layer.v, | |
| n_embd_v_gqa, nm, | |
| ggml_row_size(layer.v->type, n_embd_v_gqa), | |
| ggml_row_size(layer.v->type, n_embd_v_gqa*id)); | |
| } else { | |
| view_v_src = ggml_view_2d(ctx, layer.v, | |
| nm, n_embd_v_gqa, | |
| ggml_row_size(layer.v->type, cells.size()), | |
| ggml_row_size(layer.v->type, i)); | |
| view_v_dst = ggml_view_2d(ctx, layer.v, | |
| nm, n_embd_v_gqa, | |
| ggml_row_size(layer.v->type, cells.size()), | |
| ggml_row_size(layer.v->type, id)); | |
| } | |
| ggml_build_forward_expand(gf, ggml_cpy(ctx, view_k_src, view_k_dst)); | |
| ggml_build_forward_expand(gf, ggml_cpy(ctx, view_v_src, view_v_dst)); | |
| } | |
| i += nm - 1; | |
| } | |
| //LLAMA_LOG_INFO("gf->n_nodes = %d\n", gf->n_nodes); | |
| return res; | |
| } | |
| llama_kv_cache_unified::defrag_info llama_kv_cache_unified::defrag_prepare(int32_t n_max_nodes) const { | |
| const uint32_t n_layer = layers.size(); | |
| const uint32_t n_kv = cells.used_max_p1(); | |
| const uint32_t n_used = cells.get_used(); | |
| assert(n_used <= n_kv); | |
| //const int64_t t_start = ggml_time_us(); | |
| // number of cells moved | |
| uint32_t n_moves = 0; | |
| // each move requires 6*n_layer tensors (see graph_build_kv_self_defrag) | |
| // - source view, destination view, copy operation | |
| // - x2 for keys and values | |
| //const uint32_t max_moves = max_nodes()/(6*n_layer); | |
| // TODO: tmp fix https://github.com/ggerganov/llama.cpp/issues/6685#issuecomment-2057579516 | |
| const uint32_t max_moves = (n_max_nodes - 2*n_layer)/(6*n_layer); | |
| // determine which KV cells to move where | |
| defrag_info res; | |
| auto & ids = res.ids; | |
| ids.resize(n_kv, n_kv); | |
| for (uint32_t i0 = 0; i0 < n_used; ++i0) { | |
| if (!cells.is_empty(i0)) { | |
| ids[i0] = i0; | |
| continue; | |
| } | |
| // found a hole - fill it with data from the end of the cache | |
| uint32_t nh = 1; | |
| // determine the size of the hole | |
| while (i0 + nh < n_used && cells.is_empty(i0 + nh)) { | |
| nh++; | |
| } | |
| uint32_t nf = 0; | |
| uint32_t is = n_kv - 1; | |
| // starting from the end, find nh non-empty cells | |
| for (; is > i0; --is) { | |
| if (cells.is_empty(is) || ids[is] != n_kv) { | |
| continue; | |
| } | |
| // non-empty cell which is not yet moved | |
| nf++; | |
| if (nf == nh) { | |
| break; | |
| } | |
| } | |
| // this can only happen if `n_used` is not accurate, which would be a bug | |
| GGML_ASSERT(nf == nh && "KV defrag bug: nf != nh"); | |
| nf = 0; | |
| uint32_t i1 = is; | |
| // are we moving a continuous block of memory? | |
| bool cont = false; | |
| // should we stop searching for the next move? | |
| bool stop = false; | |
| // go back and move the nf cells to the hole | |
| for (; i1 < n_kv; ++i1) { | |
| if (cells.is_empty(i1) || ids[i1] != n_kv) { | |
| if (n_moves == max_moves) { | |
| stop = true; | |
| break; | |
| } | |
| cont = false; | |
| continue; | |
| } | |
| // this cell goes to (i0 + nf) | |
| ids[i1] = i0 + nf; | |
| if (!cont) { | |
| n_moves++; | |
| cont = true; | |
| } | |
| nf++; | |
| if (nf == nh) { | |
| break; | |
| } | |
| } | |
| if (stop || n_moves == max_moves) { | |
| break; | |
| } | |
| //LLAMA_LOG_INFO("(tmp log) KV defrag: move [%u, %u) to [%u, %u)\n", is, i1 + 1, i0, i0 + nh); | |
| i0 += nh - 1; | |
| } | |
| if (n_moves == 0) { | |
| return {}; | |
| } | |
| LLAMA_LOG_DEBUG("%s: (tmp log) KV defrag cell moves: %u\n", __func__, n_moves); | |
| LLAMA_LOG_DEBUG("%s: expected gf nodes: %u\n", __func__, 6*n_moves*n_layer); | |
| return res; | |
| } | |
| bool llama_kv_cache_unified::is_masked_swa(llama_pos p0, llama_pos p1) const { | |
| assert(p0 >= 0 && p1 >= 0); | |
| switch (swa_type) { | |
| case LLAMA_SWA_TYPE_NONE: | |
| { | |
| } break; | |
| case LLAMA_SWA_TYPE_STANDARD: | |
| { | |
| if (p1 - p0 >= (int32_t) n_swa) { | |
| return true; | |
| } | |
| } break; | |
| case LLAMA_SWA_TYPE_CHUNKED: | |
| { | |
| const llama_pos pos_chunk_start = (p1 / n_swa) * n_swa; | |
| if (p0 < pos_chunk_start) { | |
| return true; | |
| } | |
| } break; | |
| } | |
| return false; | |
| } | |
| void llama_kv_cache_unified::state_write(llama_io_write_i & io, llama_seq_id seq_id) const { | |
| std::vector<std::pair<uint32_t, uint32_t>> cell_ranges; // ranges, from inclusive, to exclusive | |
| uint32_t cell_count = 0; | |
| // Count the number of cells with the specified seq_id | |
| // Find all the ranges of cells with this seq id (or all, when -1) | |
| uint32_t cell_range_begin = cells.size(); | |
| for (uint32_t i = 0; i < cells.size(); ++i) { | |
| if (!cells.is_empty(i) && (seq_id == -1 || cells.seq_has(i, seq_id))) { | |
| ++cell_count; | |
| if (cell_range_begin == cells.size()) { | |
| cell_range_begin = i; | |
| } | |
| } else { | |
| if (cell_range_begin != cells.size()) { | |
| cell_ranges.emplace_back(cell_range_begin, i); | |
| cell_range_begin = cells.size(); | |
| } | |
| } | |
| } | |
| if (cell_range_begin != cells.size()) { | |
| cell_ranges.emplace_back(cell_range_begin, cells.size()); | |
| } | |
| // DEBUG CHECK: Sum of cell counts in ranges should equal the total cell count | |
| uint32_t cell_count_check = 0; | |
| for (const auto & range : cell_ranges) { | |
| cell_count_check += range.second - range.first; | |
| } | |
| GGML_ASSERT(cell_count == cell_count_check); | |
| io.write(&cell_count, sizeof(cell_count)); | |
| state_write_meta(io, cell_ranges, seq_id); | |
| state_write_data(io, cell_ranges); | |
| } | |
| void llama_kv_cache_unified::state_read(llama_io_read_i & io, llama_seq_id seq_id) { | |
| uint32_t cell_count; | |
| io.read_to(&cell_count, sizeof(cell_count)); | |
| bool res = true; | |
| res = res && state_read_meta(io, cell_count, seq_id); | |
| res = res && state_read_data(io, cell_count); | |
| if (!res) { | |
| if (seq_id == -1) { | |
| clear(true); | |
| } else { | |
| seq_rm(seq_id, -1, -1); | |
| } | |
| throw std::runtime_error("failed to restore kv cache"); | |
| } | |
| } | |
| void llama_kv_cache_unified::state_write_meta(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges, llama_seq_id seq_id) const { | |
| for (const auto & range : cell_ranges) { | |
| for (uint32_t i = range.first; i < range.second; ++i) { | |
| std::vector<llama_seq_id> seq_ids; | |
| for (llama_seq_id cur = 0; cur < (int) n_seq_max; ++cur) { | |
| if (cur == seq_id || seq_id == -1) { | |
| if (cells.seq_has(i, cur)) { | |
| seq_ids.push_back(cur); | |
| } | |
| } | |
| } | |
| const llama_pos pos = cells.pos_get(i); | |
| const uint32_t n_seq_id = seq_ids.size(); | |
| io.write(&pos, sizeof(pos)); | |
| io.write(&n_seq_id, sizeof(n_seq_id)); | |
| for (const auto & seq_id : seq_ids) { | |
| io.write(&seq_id, sizeof(seq_id)); | |
| } | |
| } | |
| } | |
| } | |
| void llama_kv_cache_unified::state_write_data(llama_io_write_i & io, const std::vector<std::pair<uint32_t, uint32_t>> & cell_ranges) const { | |
| const uint32_t v_trans = this->v_trans ? 1 : 0; | |
| const uint32_t n_layer = layers.size(); | |
| io.write(&v_trans, sizeof(v_trans)); | |
| io.write(&n_layer, sizeof(n_layer)); | |
| std::vector<uint8_t> tmp_buf; | |
| // Iterate and write all the keys first, each row is a cell | |
| // Get whole range at a time | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| // Write key type | |
| const int32_t k_type_i = (int32_t)layer.k->type; | |
| io.write(&k_type_i, sizeof(k_type_i)); | |
| // Write row size of key | |
| const uint64_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); | |
| io.write(&k_size_row, sizeof(k_size_row)); | |
| // Read each range of cells of k_size length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t buf_size = range_size * k_size_row; | |
| io.write_tensor(layer.k, range.first * k_size_row, buf_size); | |
| } | |
| } | |
| if (!v_trans) { | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| // Write value type | |
| const int32_t v_type_i = (int32_t)layer.v->type; | |
| io.write(&v_type_i, sizeof(v_type_i)); | |
| // Write row size of value | |
| const uint64_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); | |
| io.write(&v_size_row, sizeof(v_size_row)); | |
| // Read each range of cells of v_size length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t buf_size = range_size * v_size_row; | |
| io.write_tensor(layer.v, range.first * v_size_row, buf_size); | |
| } | |
| } | |
| } else { | |
| // When v is transposed, we also need the element size and get the element ranges from each row | |
| const uint32_t kv_size = cells.size(); | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| // Write value type | |
| const int32_t v_type_i = (int32_t)layer.v->type; | |
| io.write(&v_type_i, sizeof(v_type_i)); | |
| // Write element size | |
| const uint32_t v_size_el = ggml_type_size(layer.v->type); | |
| io.write(&v_size_el, sizeof(v_size_el)); | |
| // Write GQA embedding size | |
| io.write(&n_embd_v_gqa, sizeof(n_embd_v_gqa)); | |
| // For each row, we get the element values of each cell | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| // Read each range of cells of v_size_el length each into tmp_buf and write out | |
| for (const auto & range : cell_ranges) { | |
| const size_t range_size = range.second - range.first; | |
| const size_t src_offset = (range.first + j * kv_size) * v_size_el; | |
| const size_t buf_size = range_size * v_size_el; | |
| io.write_tensor(layer.v, src_offset, buf_size); | |
| } | |
| } | |
| } | |
| } | |
| } | |
| bool llama_kv_cache_unified::state_read_meta(llama_io_read_i & io, uint32_t cell_count, llama_seq_id dest_seq_id) { | |
| if (dest_seq_id != -1) { | |
| // single sequence | |
| seq_rm(dest_seq_id, -1, -1); | |
| llama_batch_allocr balloc(hparams.n_pos_per_embd()); | |
| llama_ubatch ubatch = balloc.ubatch_reserve(cell_count, 1); | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| llama_pos pos; | |
| uint32_t n_seq_id; | |
| io.read_to(&pos, sizeof(pos)); | |
| io.read_to(&n_seq_id, sizeof(n_seq_id)); | |
| if (n_seq_id != 1) { | |
| LLAMA_LOG_ERROR("%s: invalid seq_id-agnostic kv cell\n", __func__); | |
| return false; | |
| } | |
| // read the sequence id, but directly discard it - we will use dest_seq_id instead | |
| { | |
| llama_seq_id seq_id; | |
| io.read_to(&seq_id, sizeof(seq_id)); | |
| } | |
| ubatch.pos[i] = pos; | |
| ubatch.n_seq_id[i] = n_seq_id; | |
| ubatch.seq_id[i] = &dest_seq_id; | |
| } | |
| const auto sinfo = find_slot(ubatch, true); | |
| if (sinfo.empty()) { | |
| LLAMA_LOG_ERROR("%s: failed to find available cells in kv cache\n", __func__); | |
| return false; | |
| } | |
| apply_ubatch(sinfo, ubatch); | |
| const auto head_cur = sinfo.head(); | |
| // keep the head at the old position because we will read the KV data into it in state_read_data() | |
| head = head_cur; | |
| // DEBUG CHECK: head_cur should be our first cell, head_cur + cell_count - 1 should be our last cell (verify seq_id and pos values) | |
| // Assume that this is one contiguous block of cells | |
| GGML_ASSERT(head_cur + cell_count <= cells.size()); | |
| GGML_ASSERT(cells.pos_get(head_cur) == ubatch.pos[0]); | |
| GGML_ASSERT(cells.pos_get(head_cur + cell_count - 1) == ubatch.pos[cell_count - 1]); | |
| GGML_ASSERT(cells.seq_has(head_cur, dest_seq_id)); | |
| GGML_ASSERT(cells.seq_has(head_cur + cell_count - 1, dest_seq_id)); | |
| } else { | |
| // whole KV cache restore | |
| if (cell_count > cells.size()) { | |
| LLAMA_LOG_ERROR("%s: not enough cells in kv cache\n", __func__); | |
| return false; | |
| } | |
| clear(true); | |
| for (uint32_t i = 0; i < cell_count; ++i) { | |
| llama_pos pos; | |
| uint32_t n_seq_id; | |
| io.read_to(&pos, sizeof(pos)); | |
| io.read_to(&n_seq_id, sizeof(n_seq_id)); | |
| cells.pos_set(i, pos); | |
| for (uint32_t j = 0; j < n_seq_id; ++j) { | |
| llama_seq_id seq_id; | |
| io.read_to(&seq_id, sizeof(seq_id)); | |
| if (seq_id < 0 || (uint32_t) seq_id >= n_seq_max) { | |
| LLAMA_LOG_ERROR("%s: invalid seq_id, %d is out of range [0, %u)\n", __func__, seq_id, n_seq_max); | |
| return false; | |
| } | |
| cells.seq_add(i, seq_id); | |
| } | |
| } | |
| head = 0; | |
| } | |
| return true; | |
| } | |
| bool llama_kv_cache_unified::state_read_data(llama_io_read_i & io, uint32_t cell_count) { | |
| uint32_t v_trans; | |
| uint32_t n_layer; | |
| io.read_to(&v_trans, sizeof(v_trans)); | |
| io.read_to(&n_layer, sizeof(n_layer)); | |
| if (n_layer != layers.size()) { | |
| LLAMA_LOG_ERROR("%s: mismatched layer count (%u instead of %u)\n", __func__, n_layer, (uint32_t) layers.size()); | |
| return false; | |
| } | |
| if (cell_count > cells.size()) { | |
| LLAMA_LOG_ERROR("%s: not enough cells in kv cache to restore state (%u > %u)\n", __func__, cell_count, cells.size()); | |
| return false; | |
| } | |
| if (this->v_trans != (bool) v_trans) { | |
| LLAMA_LOG_ERROR("%s: incompatible V transposition\n", __func__); | |
| return false; | |
| } | |
| // For each layer, read the keys for each cell, one row is one cell, read as one contiguous block | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const uint32_t n_embd_k_gqa = hparams.n_embd_k_gqa(il); | |
| // Read type of key | |
| int32_t k_type_i_ref; | |
| io.read_to(&k_type_i_ref, sizeof(k_type_i_ref)); | |
| const int32_t k_type_i = (int32_t) layer.k->type; | |
| if (k_type_i != k_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched key type (%d != %d, layer %d)\n", __func__, k_type_i, k_type_i_ref, il); | |
| return false; | |
| } | |
| // Read row size of key | |
| uint64_t k_size_row_ref; | |
| io.read_to(&k_size_row_ref, sizeof(k_size_row_ref)); | |
| const size_t k_size_row = ggml_row_size(layer.k->type, n_embd_k_gqa); | |
| if (k_size_row != k_size_row_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched key row size (%zu != %zu, layer %d)\n", __func__, k_size_row, (size_t) k_size_row_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // Read and set the keys for the whole cell range | |
| ggml_backend_tensor_set(layer.k, io.read(cell_count * k_size_row), head * k_size_row, cell_count * k_size_row); | |
| } | |
| } | |
| if (!this->v_trans) { | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| // Read type of value | |
| int32_t v_type_i_ref; | |
| io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
| const int32_t v_type_i = (int32_t)layer.v->type; | |
| if (v_type_i != v_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
| return false; | |
| } | |
| // Read row size of value | |
| uint64_t v_size_row_ref; | |
| io.read_to(&v_size_row_ref, sizeof(v_size_row_ref)); | |
| const size_t v_size_row = ggml_row_size(layer.v->type, n_embd_v_gqa); | |
| if (v_size_row != v_size_row_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value row size (%zu != %zu, layer %d)\n", __func__, v_size_row, (size_t) v_size_row_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // Read and set the values for the whole cell range | |
| ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_row), head * v_size_row, cell_count * v_size_row); | |
| } | |
| } | |
| } else { | |
| // For each layer, read the values for each cell (transposed) | |
| for (const auto & layer : layers) { | |
| const uint32_t il = layer.il; | |
| const uint32_t n_embd_v_gqa = hparams.n_embd_v_gqa(il); | |
| // Read type of value | |
| int32_t v_type_i_ref; | |
| io.read_to(&v_type_i_ref, sizeof(v_type_i_ref)); | |
| const int32_t v_type_i = (int32_t)layer.v->type; | |
| if (v_type_i != v_type_i_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value type (%d != %d, layer %d)\n", __func__, v_type_i, v_type_i_ref, il); | |
| return false; | |
| } | |
| // Read element size of value | |
| uint32_t v_size_el_ref; | |
| io.read_to(&v_size_el_ref, sizeof(v_size_el_ref)); | |
| const size_t v_size_el = ggml_type_size(layer.v->type); | |
| if (v_size_el != v_size_el_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched value element size (%zu != %zu, layer %d)\n", __func__, v_size_el, (size_t) v_size_el_ref, il); | |
| return false; | |
| } | |
| // Read GQA embedding size | |
| uint32_t n_embd_v_gqa_ref; | |
| io.read_to(&n_embd_v_gqa_ref, sizeof(n_embd_v_gqa_ref)); | |
| if (n_embd_v_gqa != n_embd_v_gqa_ref) { | |
| LLAMA_LOG_ERROR("%s: mismatched GQA embedding size (%u != %u, layer %d)\n", __func__, n_embd_v_gqa, n_embd_v_gqa_ref, il); | |
| return false; | |
| } | |
| if (cell_count) { | |
| // For each row in the transposed matrix, read the values for the whole cell range | |
| for (uint32_t j = 0; j < n_embd_v_gqa; ++j) { | |
| const size_t dst_offset = (head + j * cells.size()) * v_size_el; | |
| ggml_backend_tensor_set(layer.v, io.read(cell_count * v_size_el), dst_offset, cell_count * v_size_el); | |
| } | |
| } | |
| } | |
| } | |
| return true; | |
| } | |
| // | |
| // llama_kv_cache_unified_context | |
| // | |
| llama_kv_cache_unified_context::llama_kv_cache_unified_context(llama_memory_status status) : status(status) {} | |
| llama_kv_cache_unified_context::llama_kv_cache_unified_context( | |
| llama_kv_cache_unified * kv) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv) { | |
| n_kv = kv->get_size(); | |
| // create a dummy slot info - the actual data is irrelevant. we just need to build the graph | |
| sinfos.resize(1); | |
| sinfos[0].idxs.resize(1); | |
| sinfos[0].idxs[0] = 0; | |
| } | |
| llama_kv_cache_unified_context::llama_kv_cache_unified_context( | |
| llama_kv_cache_unified * kv, | |
| llama_context * lctx, | |
| bool do_shift, | |
| defrag_info dinfo) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), lctx(lctx), do_shift(do_shift), dinfo(std::move(dinfo)) { | |
| if (!do_shift && this->dinfo.empty()) { | |
| status = LLAMA_MEMORY_STATUS_NO_UPDATE; | |
| } | |
| } | |
| llama_kv_cache_unified_context::llama_kv_cache_unified_context( | |
| llama_kv_cache_unified * kv, | |
| llama_kv_cache_unified::slot_info_vec_t sinfos, | |
| std::vector<llama_ubatch> ubatches) : status(LLAMA_MEMORY_STATUS_SUCCESS), kv(kv), sinfos(std::move(sinfos)), ubatches(std::move(ubatches)) { | |
| } | |
| llama_kv_cache_unified_context::~llama_kv_cache_unified_context() = default; | |
| bool llama_kv_cache_unified_context::next() { | |
| assert(status == LLAMA_MEMORY_STATUS_SUCCESS); | |
| if (++i_cur >= ubatches.size()) { | |
| return false; | |
| } | |
| return true; | |
| } | |
| bool llama_kv_cache_unified_context::apply() { | |
| assert(!llama_memory_status_is_fail(status)); | |
| // no ubatches -> this is a KV cache update | |
| if (ubatches.empty()) { | |
| kv->update(lctx, do_shift, dinfo); | |
| return true; | |
| } | |
| kv->apply_ubatch(sinfos[i_cur], ubatches[i_cur]); | |
| n_kv = kv->get_n_kv(); | |
| return true; | |
| } | |
| llama_memory_status llama_kv_cache_unified_context::get_status() const { | |
| return status; | |
| } | |
| const llama_ubatch & llama_kv_cache_unified_context::get_ubatch() const { | |
| assert(status == LLAMA_MEMORY_STATUS_SUCCESS); | |
| return ubatches[i_cur]; | |
| } | |
| uint32_t llama_kv_cache_unified_context::get_n_kv() const { | |
| return n_kv; | |
| } | |
| ggml_tensor * llama_kv_cache_unified_context::get_k(ggml_context * ctx, int32_t il) const { | |
| return kv->get_k(ctx, il, n_kv); | |
| } | |
| ggml_tensor * llama_kv_cache_unified_context::get_v(ggml_context * ctx, int32_t il) const { | |
| return kv->get_v(ctx, il, n_kv); | |
| } | |
| ggml_tensor * llama_kv_cache_unified_context::cpy_k(ggml_context * ctx, ggml_tensor * k_cur, ggml_tensor * k_idxs, int32_t il) const { | |
| return kv->cpy_k(ctx, k_cur, k_idxs, il, sinfos[i_cur]); | |
| } | |
| ggml_tensor * llama_kv_cache_unified_context::cpy_v(ggml_context * ctx, ggml_tensor * v_cur, ggml_tensor * v_idxs, int32_t il) const { | |
| return kv->cpy_v(ctx, v_cur, v_idxs, il, sinfos[i_cur]); | |
| } | |
| ggml_tensor * llama_kv_cache_unified_context::build_input_k_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { | |
| return kv->build_input_k_idxs(ctx, ubatch); | |
| } | |
| ggml_tensor * llama_kv_cache_unified_context::build_input_v_idxs(ggml_context * ctx, const llama_ubatch & ubatch) const { | |
| return kv->build_input_v_idxs(ctx, ubatch); | |
| } | |
| void llama_kv_cache_unified_context::set_input_k_shift(ggml_tensor * dst) const { | |
| kv->set_input_k_shift(dst); | |
| } | |
| void llama_kv_cache_unified_context::set_input_k_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const { | |
| kv->set_input_k_idxs(dst, ubatch, sinfos[i_cur]); | |
| } | |
| void llama_kv_cache_unified_context::set_input_v_idxs(ggml_tensor * dst, const llama_ubatch * ubatch) const { | |
| kv->set_input_v_idxs(dst, ubatch, sinfos[i_cur]); | |
| } | |
| void llama_kv_cache_unified_context::set_input_kq_mask(ggml_tensor * dst, const llama_ubatch * ubatch, bool causal_attn) const { | |
| kv->set_input_kq_mask(dst, ubatch, causal_attn); | |
| } | |
| void llama_kv_cache_unified_context::set_input_pos_bucket(ggml_tensor * dst, const llama_ubatch * ubatch) const { | |
| kv->set_input_pos_bucket(dst, ubatch); | |
| } | |
| uint32_t llama_kv_cache_unified::get_padding(const llama_cparams & cparams) { | |
| // the FA kernels require padding to avoid extra runtime boundary checks | |
| return cparams.flash_attn ? 256u : 32u; | |
| } | |