File size: 22,502 Bytes
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec1374
58220b6
0ec1374
 
 
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
5ef1601
0ec1374
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
511930c
 
 
 
 
 
ade9bc3
511930c
 
 
 
 
05fda4a
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0ec1374
511930c
 
 
 
 
 
 
0ec1374
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
511930c
0ec1374
ade9bc3
511930c
 
 
 
 
0ec1374
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc53087
 
511930c
 
 
 
 
 
 
 
 
 
0ec1374
511930c
 
0ec1374
511930c
 
 
 
 
bc53087
 
 
5d037b9
 
bc53087
 
 
 
 
5d037b9
 
 
 
0ec1374
5d037b9
 
 
 
 
 
 
0ec1374
5d037b9
 
0ec1374
5d037b9
 
 
 
 
bc53087
 
 
 
 
511930c
 
 
bc53087
 
 
 
 
 
 
 
 
511930c
 
 
 
0ec1374
511930c
 
 
 
 
 
 
 
 
 
 
bc53087
 
511930c
 
 
 
ade9bc3
 
 
bc53087
 
 
 
 
 
ade9bc3
 
 
 
bc53087
 
ade9bc3
bc53087
 
ade9bc3
0ec1374
 
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
05d6d9c
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
05d6d9c
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d6d9c
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
05d6d9c
 
511930c
0ec1374
 
 
 
511930c
fc04dc0
511930c
 
 
 
bc53087
 
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fc04dc0
 
511930c
 
 
 
 
 
 
05d6d9c
511930c
05d6d9c
511930c
0ec1374
 
 
 
511930c
 
 
 
 
 
0ec1374
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d037b9
 
 
511930c
 
5d037b9
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5d037b9
 
0ec1374
5d037b9
 
 
 
 
 
0ec1374
 
5d037b9
 
 
 
 
511930c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ade9bc3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bc53087
ade9bc3
 
 
 
 
 
 
 
 
bc53087
511930c
 
ade9bc3
 
 
511930c
 
 
 
 
 
bc53087
 
 
 
 
511930c
 
 
 
 
 
 
 
 
 
 
 
5d037b9
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
#pragma once

#include "llama-arch.h"
#include "llama-hparams.h"
#include "llama-adapter.h"

#include <cstdint>
#include <vector>
#include <memory>
#include <set>
#include <functional>

struct ggml_cgraph;
struct ggml_context;
struct ggml_tensor;

struct llama_ubatch;
struct llama_cparams;

struct llama_memory_context_i;

class llama_kv_cache_unified_context;
class llama_kv_cache_unified_iswa_context;
class llama_memory_recurrent_context;
class llama_memory_hybrid_context;

// certain models (typically multi-modal) can produce different types of graphs
enum llm_graph_type {
    LLM_GRAPH_TYPE_DEFAULT,
    LLM_GRAPH_TYPE_ENCODER,
    LLM_GRAPH_TYPE_DECODER,
};

enum llm_ffn_op_type {
    LLM_FFN_SILU,
    LLM_FFN_GELU,
    LLM_FFN_RELU,
    LLM_FFN_RELU_SQR,
    LLM_FFN_SWIGLU,
    LLM_FFN_GEGLU,
    LLM_FFN_REGLU,
};

enum llm_ffn_gate_type {
    LLM_FFN_SEQ,
    LLM_FFN_PAR, // ffn_gate is parallel to ffn_up
};

enum llm_norm_type {
    LLM_NORM,
    LLM_NORM_RMS,
    LLM_NORM_GROUP,
};

// TODO: tmp - need something better to pass the data from the encoder to the decoder
struct llama_cross {
    // the output embeddings from the encoder as a ggml tensor
    // TODO: this needs more work to be correct, for now copy the embeddings data to host memory
    //       ref: https://github.com/ggml-org/llama.cpp/pull/11213#discussion_r1969892524
    //ggml_tensor * t_embd = nullptr;

    int64_t n_embd = 0;
    int64_t n_enc  = 0;

    // embeddings data copied to host memory (tmp)
    std::vector<float> v_embd;

    // needed to construct the cross-attention mask in the decoder
    std::vector<std::set<llama_seq_id>> seq_ids_enc;
};

//
// llm_graph_input
//

class llm_graph_input_i {
public:
    virtual ~llm_graph_input_i() = default;

    virtual void set_input(const llama_ubatch * ubatch) = 0;
};

using llm_graph_input_ptr = std::unique_ptr<llm_graph_input_i>;


class llm_graph_input_embd : public llm_graph_input_i {
public:
    llm_graph_input_embd()          = default;
    virtual ~llm_graph_input_embd() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * tokens = nullptr; // I32 [n_batch]
    ggml_tensor * embd   = nullptr; // F32 [n_embd, n_batch]
};

class llm_graph_input_pos : public llm_graph_input_i {
public:
    llm_graph_input_pos(uint32_t n_pos_per_embd) : n_pos_per_embd(n_pos_per_embd) {}
    virtual ~llm_graph_input_pos() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos = nullptr; // I32 [n_batch]

    const uint32_t n_pos_per_embd = 1;
};

// temperature tuning, used by llama4
class llm_graph_input_attn_temp : public llm_graph_input_i {
public:
    llm_graph_input_attn_temp(uint32_t n_attn_temp_floor_scale, float f_attn_temp_scale)
        : n_attn_temp_floor_scale(n_attn_temp_floor_scale), f_attn_temp_scale(f_attn_temp_scale) {}
    virtual ~llm_graph_input_attn_temp() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * attn_scale = nullptr; // F32 [n_batch]

    const uint32_t n_attn_temp_floor_scale;
    const float    f_attn_temp_scale;
};

class llm_graph_input_pos_bucket : public llm_graph_input_i {
public:
    llm_graph_input_pos_bucket(const llama_hparams & hparams) : hparams(hparams) {}
    virtual ~llm_graph_input_pos_bucket() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos_bucket = nullptr; // I32 [n_batch, n_batch]

    const llama_hparams & hparams;
};

class llm_graph_input_pos_bucket_kv : public llm_graph_input_i {
public:
    llm_graph_input_pos_bucket_kv(
            const llama_hparams & hparams,
            const llama_kv_cache_unified_context * mctx) : hparams(hparams), mctx(mctx) {}
    virtual ~llm_graph_input_pos_bucket_kv() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * pos_bucket = nullptr; // I32 [n_kv, n_batch]

    const llama_hparams & hparams;

    const llama_kv_cache_unified_context * mctx;
};

class llm_graph_input_out_ids : public llm_graph_input_i {
public:
    llm_graph_input_out_ids(
            const llama_hparams & hparams,
            const llama_cparams & cparams,
            int32_t n_outputs) : hparams(hparams), cparams(cparams), n_outputs(n_outputs) {}
    virtual ~llm_graph_input_out_ids() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * out_ids; // I32 [n_outputs]

    const llama_hparams & hparams;
    const llama_cparams & cparams;

    const int32_t n_outputs;
};

class llm_graph_input_mean : public llm_graph_input_i {
public:
    llm_graph_input_mean(const llama_cparams & cparams) : cparams(cparams) {}
    virtual ~llm_graph_input_mean() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * mean; // F32 [n_batch, n_batch]

    const llama_cparams & cparams;
};

class llm_graph_input_cls : public llm_graph_input_i {
public:
    llm_graph_input_cls(const llama_cparams & cparams) : cparams(cparams) {}
    virtual ~llm_graph_input_cls() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * cls; // I32 [n_batch]

    const llama_cparams & cparams;
};

class llm_graph_input_rs : public llm_graph_input_i {
public:
    llm_graph_input_rs(const llama_memory_recurrent_context * mctx) : mctx(mctx) {}
    virtual ~llm_graph_input_rs() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * s_copy; // I32 [kv_size]

    const llama_memory_recurrent_context * mctx;
};

class llm_graph_input_cross_embd : public llm_graph_input_i {
public:
    llm_graph_input_cross_embd(
            const llama_cross * cross) : cross(cross) {}
    virtual ~llm_graph_input_cross_embd() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * cross_embd; // F32 [n_embd, n_outputs_enc]

    const llama_cross * cross;
};

class llm_graph_input_attn_no_cache : public llm_graph_input_i {
public:
    llm_graph_input_attn_no_cache(const llama_hparams & hparams, const llama_cparams & cparams) :
        hparams(hparams),
        cparams(cparams) {
    }
    ~llm_graph_input_attn_no_cache() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_kq_mask() const { return kq_mask_cnv; }

    ggml_tensor * kq_mask     = nullptr; // F32 [n_tokens, n_batch, 1, 1]
    ggml_tensor * kq_mask_cnv = nullptr; //     [n_tokens, n_batch, 1, 1]

    const llama_hparams & hparams;
    const llama_cparams & cparams;
};

class llm_graph_input_attn_kv_unified : public llm_graph_input_i {
public:
    llm_graph_input_attn_kv_unified(
            const llama_hparams & hparams,
            const llama_cparams & cparams,
            const llama_kv_cache_unified_context * mctx) :
        hparams(hparams),
        cparams(cparams),
        mctx(mctx) {
    }
    ~llm_graph_input_attn_kv_unified() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_k_idxs() const { return self_k_idxs; }
    ggml_tensor * get_v_idxs() const { return self_v_idxs; }

    ggml_tensor * get_kq_mask() const { return self_kq_mask_cnv; }

    ggml_tensor * self_k_idxs = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs = nullptr; // I64 [n_batch]

    ggml_tensor * self_kq_mask     = nullptr; // F32 [n_kv, n_batch, 1, 1]
    ggml_tensor * self_kq_mask_cnv = nullptr; //     [n_kv, n_batch, 1, 1]

    const llama_hparams & hparams;
    const llama_cparams & cparams;

    const llama_kv_cache_unified_context * mctx;
};

class llm_graph_input_attn_kv_unified_iswa : public llm_graph_input_i {
public:
    llm_graph_input_attn_kv_unified_iswa(
            const llama_hparams & hparams,
            const llama_cparams & cparams,
            const llama_kv_cache_unified_iswa_context * mctx) :
        hparams(hparams),
        cparams(cparams),
        mctx(mctx) {
    }
    ~llm_graph_input_attn_kv_unified_iswa() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_k_idxs()     const { return self_k_idxs; }
    ggml_tensor * get_v_idxs()     const { return self_v_idxs; }
    ggml_tensor * get_k_idxs_swa() const { return self_k_idxs_swa; }
    ggml_tensor * get_v_idxs_swa() const { return self_v_idxs_swa; }

    ggml_tensor * get_kq_mask()     const { return self_kq_mask_cnv; }
    ggml_tensor * get_kq_mask_swa() const { return self_kq_mask_swa_cnv; }

    ggml_tensor * self_k_idxs     = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs     = nullptr; // I64 [n_batch]
    ggml_tensor * self_k_idxs_swa = nullptr; // I64 [n_batch]
    ggml_tensor * self_v_idxs_swa = nullptr; // I64 [n_batch]

    ggml_tensor * self_kq_mask         = nullptr; // F32 [n_kv, n_batch, 1, 1]
    ggml_tensor * self_kq_mask_cnv     = nullptr; //     [n_kv, n_batch, 1, 1]
    ggml_tensor * self_kq_mask_swa     = nullptr; // F32 [n_kv, n_batch, 1, 1]
    ggml_tensor * self_kq_mask_swa_cnv = nullptr; //     [n_kv, n_batch, 1, 1]

    const llama_hparams & hparams;
    const llama_cparams & cparams;

    const llama_kv_cache_unified_iswa_context * mctx;
};

class llm_graph_input_attn_cross : public llm_graph_input_i {
public:
    llm_graph_input_attn_cross(const llama_cross * cross) : cross(cross) {}
    ~llm_graph_input_attn_cross() = default;

    void set_input(const llama_ubatch * ubatch) override;

    ggml_tensor * get_kq_mask_cross() const { return cross_kq_mask_cnv; }

    ggml_tensor * cross_kq_mask     = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]
    ggml_tensor * cross_kq_mask_cnv = nullptr; // F32 [n_outputs_enc, n_batch, 1, 1]

    const llama_cross * cross = nullptr;
};

class llm_graph_input_mem_hybrid : public llm_graph_input_i {
public:
    llm_graph_input_mem_hybrid(
            std::unique_ptr<llm_graph_input_attn_kv_unified> inp_attn,
            std::unique_ptr<llm_graph_input_rs>              inp_rs,
            const llama_memory_hybrid_context *              mctx) :
        inp_attn(std::move(inp_attn)),
        inp_rs(std::move(inp_rs)),
        mctx(mctx) { }
    virtual ~llm_graph_input_mem_hybrid() = default;

    void set_input(const llama_ubatch * ubatch) override;

    std::unique_ptr<llm_graph_input_attn_kv_unified> inp_attn;
    std::unique_ptr<llm_graph_input_rs>              inp_rs;

    llm_graph_input_attn_kv_unified * get_attn() const { return inp_attn.get(); }
    llm_graph_input_rs              * get_recr() const { return inp_rs.get(); }

    const llama_memory_hybrid_context * mctx;
};

//
// llm_graph_result
//

// these objects deliver the result from the graph build process back to the llama_context
// note that the input tensors created for the graph are referenced here - the goal is to be able to populate their
//   specific data, by calling the set_inputs() method
// along with the input tensors, the object also provides commonly used outputs tensors, such as logits, embeddings, etc.
//   these are used by the llama_context to extact the relevant data, based on the compute parameters

class llm_graph_result_i {
public:
    virtual ~llm_graph_result_i() = default;

    virtual ggml_tensor * get_tokens()      = 0;
    virtual ggml_tensor * get_logits()      = 0;
    virtual ggml_tensor * get_embd()        = 0;
    virtual ggml_tensor * get_embd_pooled() = 0;

    virtual void set_inputs(const llama_ubatch * ubatch) = 0;
};

using llm_graph_result_ptr = std::unique_ptr<llm_graph_result_i>;


class llm_graph_result : public llm_graph_result_i {
public:
    virtual ~llm_graph_result() = default;

    ggml_tensor * get_tokens()      override { return t_tokens; }
    ggml_tensor * get_logits()      override { return t_logits; }
    ggml_tensor * get_embd()        override { return t_embd; }
    ggml_tensor * get_embd_pooled() override { return t_embd_pooled; }

    void set_inputs(const llama_ubatch * ubatch) override {
        for (auto & input : inputs) {
            input->set_input(ubatch);
        }
    }

    llm_graph_input_i * add_input(llm_graph_input_ptr input) {
        inputs.emplace_back(std::move(input));
        return inputs.back().get();
    }

    // important graph nodes
    ggml_tensor * t_tokens      = nullptr;
    ggml_tensor * t_logits      = nullptr;
    ggml_tensor * t_embd        = nullptr;
    ggml_tensor * t_embd_pooled = nullptr;

    std::vector<llm_graph_input_ptr> inputs;
};

//
// llm_graph_context
//

// callback that allows us to apply custom logic to each tensor (e.g. ggml-alloc, offloading, etc.)
using llm_graph_cb = std::function<void(const llama_ubatch & ubatch, ggml_tensor * cur, const char * name, int il)>;

struct llm_graph_params {
    ggml_context * ctx;

    const llm_arch arch;

    const llama_hparams & hparams;
    const llama_cparams & cparams;
    const llama_ubatch  & ubatch;

    ggml_backend_sched_t sched;
    ggml_backend_t backend_cpu;

    const llama_adapter_cvec     * cvec;
    const llama_adapter_loras    * loras;
    const llama_memory_context_i * mctx;
    const llama_cross            * cross;

    uint32_t n_outputs;

    const llm_graph_cb & cb;
};

// used in build_rs to properly order writes and avoid unnecessary copies
using llm_graph_get_rows_fn = std::function<ggml_tensor * (ggml_context *, ggml_tensor * states, ggml_tensor * ids)>;

struct llm_graph_context {
    const llm_arch arch;

    const llama_hparams & hparams;
    const llama_cparams & cparams;
    const llama_ubatch  & ubatch;

    const int64_t n_embd;
    const int64_t n_layer;
    const int64_t n_rot;
    const int64_t n_ctx;       // user-specified context size (can be different from n_ctx_train)
    const int64_t n_head;
    const int64_t n_head_kv;
    const int64_t n_embd_head_k;
    const int64_t n_embd_k_gqa;
    const int64_t n_embd_head_v;
    const int64_t n_embd_v_gqa;
    const int64_t n_expert;
    const int64_t n_expert_used;

    const float freq_base;
    const float freq_scale;
    const float ext_factor;
    const float attn_factor;
    const float beta_fast;
    const float beta_slow;
    const float norm_eps;
    const float norm_rms_eps;

    const int64_t n_tokens;
    const int64_t n_outputs;
    const int32_t n_ctx_orig; // yarn

    const enum llama_pooling_type pooling_type;
    const enum llama_rope_type    rope_type;

    ggml_context * ctx0 = nullptr;

    ggml_backend_sched_t sched;

    ggml_backend_t backend_cpu; // TODO: needed by build_attn_mha, figure out a way to remove?

    const llama_adapter_cvec     * cvec;
    const llama_adapter_loras    * loras;
    const llama_memory_context_i * mctx;
    const llama_cross            * cross;

    const llm_graph_cb & cb_func;

    std::unique_ptr<llm_graph_result> res;

    llm_graph_context(const llm_graph_params & params);
    virtual ~llm_graph_context() = default;

    void cb(ggml_tensor * cur, const char * name, int il) const;

    //
    // common
    //

    ggml_tensor * build_cvec(
             ggml_tensor * cur,
                     int   il) const;

    // do mat_mul, while optionally apply lora
    ggml_tensor * build_lora_mm(
              ggml_tensor * w,
              ggml_tensor * cur) const;

    // do mat_mul_id, while optionally apply lora
    ggml_tensor * build_lora_mm_id(
              ggml_tensor * w,   // ggml_tensor * as
              ggml_tensor * cur, // ggml_tensor * b
              ggml_tensor * ids) const;

    ggml_tensor * build_norm(
             ggml_tensor * cur,
             ggml_tensor * mw,
             ggml_tensor * mb,
           llm_norm_type   type,
                     int   il) const;

    ggml_tensor * build_ffn(
             ggml_tensor * cur,
             ggml_tensor * up,
             ggml_tensor * up_b,
             ggml_tensor * up_s,
             ggml_tensor * gate,
             ggml_tensor * gate_b,
             ggml_tensor * gate_s,
             ggml_tensor * down,
             ggml_tensor * down_b,
             ggml_tensor * down_s,
             ggml_tensor * act_scales,
         llm_ffn_op_type   type_op,
       llm_ffn_gate_type   type_gate,
                     int   il) const;

    ggml_tensor * build_moe_ffn(
             ggml_tensor * cur,
             ggml_tensor * gate_inp,
             ggml_tensor * up_exps,
             ggml_tensor * gate_exps,
             ggml_tensor * down_exps,
             ggml_tensor * exp_probs_b,
                 int64_t   n_expert,
                 int64_t   n_expert_used,
         llm_ffn_op_type   type_op,
                    bool   norm_w,
                    bool   scale_w,
                   float   w_scale,
            llama_expert_gating_func_type gating_op,
                     int   il) const;

    //
    // inputs
    //

    ggml_tensor * build_inp_embd(ggml_tensor * tok_embd) const;
    ggml_tensor * build_inp_pos() const;
    ggml_tensor * build_inp_attn_scale() const;
    ggml_tensor * build_inp_out_ids() const;
    ggml_tensor * build_inp_mean() const;
    ggml_tensor * build_inp_cls() const;

    ggml_tensor * build_inp_cross_embd() const;
    ggml_tensor * build_inp_pos_bucket_enc() const;
    ggml_tensor * build_inp_pos_bucket_dec() const;
    ggml_tensor * build_pos_bias(ggml_tensor * pos_bucket, ggml_tensor * attn_rel_b) const;

    //
    // attention
    //

    ggml_tensor * build_attn_mha(
             ggml_cgraph * gf,
             ggml_tensor * q,       // [n_embd_head_q, n_head_q, n_tokens]
             ggml_tensor * k,       // [n_embd_head_k, n_head_k, n_tokens]
             ggml_tensor * v,       // [n_embd_head_v, n_head_v, n_tokens] (v_trans == false)
             ggml_tensor * kq_b,
             ggml_tensor * kq_mask,
             ggml_tensor * v_mla,   // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                   float   kq_scale) const;

    llm_graph_input_attn_no_cache * build_attn_inp_no_cache() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_no_cache * inp,
            ggml_cgraph * gf,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                  float   kq_scale,
                    int   il) const;

    llm_graph_input_attn_kv_unified * build_attn_inp_kv_unified() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_kv_unified * inp,
            ggml_cgraph * gf,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                  float   kq_scale,
                    int   il) const;

    llm_graph_input_attn_kv_unified_iswa * build_attn_inp_kv_unified_iswa() const;

    // note: if k_cur or v_cur are not provided, they will not be stored in the memory
    ggml_tensor * build_attn(
            llm_graph_input_attn_kv_unified_iswa * inp,
            ggml_cgraph * gf,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens] optional
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens] optional
            ggml_tensor * kq_b,
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                  float   kq_scale,
                    int   il) const;

    llm_graph_input_attn_cross * build_attn_inp_cross() const;

    ggml_tensor * build_attn(
            llm_graph_input_attn_cross * inp,
            ggml_cgraph * gf,
            ggml_tensor * wo,
            ggml_tensor * wo_b,
            ggml_tensor * q_cur, // [n_embd_head_q, n_head_q, n_tokens]
            ggml_tensor * k_cur, // [n_embd_head_k, n_head_k, n_tokens]
            ggml_tensor * v_cur, // [n_embd_head_v, n_head_v, n_tokens]
            ggml_tensor * kq_b,
            ggml_tensor * v_mla, // [n_embd_head_v_mla, n_embd_head_v, n_head_v]
                  float   kq_scale,
                    int   il) const;

    //
    // recurrent
    //

    // TODO: avoid notion of "kv"
    // TODO: move this implementation to llama_memory_recurrent.
    //       this is analogous to llama_kv_cache_unified::cpy_k / cpy_v
    //       when moving, avoid passing `ggml_cgraph` - only pass `ggml_context`. would likely need to split the
    //         implementation in 2 separate methods. the goal is to avoid calling `ggml_build_forward_expand` in
    //         `llama_memory_recurrent`
    ggml_tensor * build_rs(
            ggml_cgraph * gf,
            ggml_tensor * s,
            ggml_tensor * state_copy,
                int32_t   state_size,
                int32_t   n_seqs,
               uint32_t   n_kv,
               uint32_t   kv_head,
               uint32_t   kv_size,
                int32_t   rs_zero,
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;

    llm_graph_input_rs * build_rs_inp() const;

    ggml_tensor * build_rs(
            llm_graph_input_rs * inp,
            ggml_cgraph * gf,
            ggml_tensor * s,
                int32_t   state_size,
                int32_t   n_seqs,
            const llm_graph_get_rows_fn & get_state_rows = ggml_get_rows) const;

    ggml_tensor * build_rwkv_token_shift_load(
        llm_graph_input_rs * inp,
               ggml_cgraph * gf,
        const llama_ubatch & ubatch,
                     int   il) const;

    ggml_tensor * build_rwkv_token_shift_store(
             ggml_tensor * token_shift,
      const llama_ubatch & ubatch,
                     int   il) const;
    //
    // hybrid
    //

    llm_graph_input_mem_hybrid * build_inp_mem_hybrid() const;

    //
    // pooling
    //

    void build_pooling(
            ggml_cgraph * gf,
            ggml_tensor * cls,
            ggml_tensor * cls_b,
            ggml_tensor * cls_out,
            ggml_tensor * cls_out_b) const;
};

// TODO: better name
int32_t llama_relative_position_bucket(llama_pos x, llama_pos y, uint64_t n_buckets, bool bidirectional);