Spaces:
Runtime error
Runtime error
zero cardinality values
Browse files- app.py +0 -0
- multi_label_precision_recall_accuracy_fscore.py +6 -3
- tests.py +88 -16
app.py
CHANGED
|
File without changes
|
multi_label_precision_recall_accuracy_fscore.py
CHANGED
|
@@ -69,6 +69,7 @@ Examples:
|
|
| 69 |
"accuracy": 1.0,
|
| 70 |
"fscore": 1.0
|
| 71 |
}
|
|
|
|
| 72 |
"""
|
| 73 |
|
| 74 |
|
|
@@ -81,6 +82,8 @@ class MultiLabelPrecisionRecallAccuracyFscore(evaluate.Metric):
|
|
| 81 |
def __init__(self, *args, **kwargs):
|
| 82 |
super().__init__(*args, **kwargs)
|
| 83 |
self.beta = kwargs.get("beta", 1.0)
|
|
|
|
|
|
|
| 84 |
self.use_multiset = self.config_name == "multiset"
|
| 85 |
|
| 86 |
def _info(self):
|
|
@@ -126,9 +129,9 @@ class MultiLabelPrecisionRecallAccuracyFscore(evaluate.Metric):
|
|
| 126 |
prediction_cardinality = len(prediction)
|
| 127 |
reference_cardinality = len(reference)
|
| 128 |
|
| 129 |
-
precision = intersection_cardinality / prediction_cardinality if prediction_cardinality > 0 else
|
| 130 |
-
recall = intersection_cardinality / reference_cardinality if reference_cardinality > 0 else
|
| 131 |
-
accuracy = intersection_cardinality / union_cardinality
|
| 132 |
|
| 133 |
return precision, recall, accuracy
|
| 134 |
|
|
|
|
| 69 |
"accuracy": 1.0,
|
| 70 |
"fscore": 1.0
|
| 71 |
}
|
| 72 |
+
|
| 73 |
"""
|
| 74 |
|
| 75 |
|
|
|
|
| 82 |
def __init__(self, *args, **kwargs):
|
| 83 |
super().__init__(*args, **kwargs)
|
| 84 |
self.beta = kwargs.get("beta", 1.0)
|
| 85 |
+
self.zero_cardinality_precision = kwargs.get("zero_cardinality_precision", 0.0) # default value for precision when prediction is empty, when precision and recall are both 0, it is always 1
|
| 86 |
+
self.zero_cardinality_recall = kwargs.get("zero_cardinality_recall", 0.0) # default value for recall when reference is empty, when precision and recall are both 0, it is always 1
|
| 87 |
self.use_multiset = self.config_name == "multiset"
|
| 88 |
|
| 89 |
def _info(self):
|
|
|
|
| 129 |
prediction_cardinality = len(prediction)
|
| 130 |
reference_cardinality = len(reference)
|
| 131 |
|
| 132 |
+
precision = intersection_cardinality / prediction_cardinality if prediction_cardinality > 0 else self.zero_cardinality_precision
|
| 133 |
+
recall = intersection_cardinality / reference_cardinality if reference_cardinality > 0 else self.zero_cardinality_recall
|
| 134 |
+
accuracy = intersection_cardinality / union_cardinality # no need for check, as union_cardinality is always > 0 if prediction and reference are not empty
|
| 135 |
|
| 136 |
return precision, recall, accuracy
|
| 137 |
|
tests.py
CHANGED
|
@@ -8,6 +8,7 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 8 |
All of these tests are also used for multiset configuration. So please mind this and write the test in a way that
|
| 9 |
it is valid for both configurations (do not use same label multiple times).
|
| 10 |
"""
|
|
|
|
| 11 |
def setUp(self):
|
| 12 |
self.multi_label_precision_recall_accuracy_fscore = MultiLabelPrecisionRecallAccuracyFscore()
|
| 13 |
|
|
@@ -149,7 +150,7 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 149 |
"precision": 1.0,
|
| 150 |
"recall": 0.5,
|
| 151 |
"accuracy": 0.5,
|
| 152 |
-
"fscore": 2/3
|
| 153 |
},
|
| 154 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 155 |
predictions=[
|
|
@@ -167,7 +168,7 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 167 |
"precision": 0.5,
|
| 168 |
"recall": 1.0,
|
| 169 |
"accuracy": 0.5,
|
| 170 |
-
"fscore": 2/3
|
| 171 |
},
|
| 172 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 173 |
predictions=[
|
|
@@ -184,7 +185,7 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 184 |
{
|
| 185 |
"precision": 0.5,
|
| 186 |
"recall": 0.5,
|
| 187 |
-
"accuracy": 1/3,
|
| 188 |
"fscore": 0.5
|
| 189 |
},
|
| 190 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
|
@@ -200,10 +201,10 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 200 |
def test_partial_match_multi_sample(self):
|
| 201 |
self.assertDictEqual(
|
| 202 |
{
|
| 203 |
-
"precision": 2.5/3,
|
| 204 |
-
"recall": 2/3,
|
| 205 |
"accuracy": 0.5,
|
| 206 |
-
"fscore": 2*(2.5/3 * 2/3) / (2.5/3 + 2/3)
|
| 207 |
},
|
| 208 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 209 |
predictions=[
|
|
@@ -223,10 +224,10 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 223 |
self.multi_label_precision_recall_accuracy_fscore.beta = 2
|
| 224 |
self.assertDictEqual(
|
| 225 |
{
|
| 226 |
-
"precision": 2.5/3,
|
| 227 |
-
"recall": 2/3,
|
| 228 |
"accuracy": 0.5,
|
| 229 |
-
"fscore": 5*(2.5/3 * 2/3) / (4*2.5/3 + 2/3)
|
| 230 |
},
|
| 231 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 232 |
predictions=[
|
|
@@ -266,7 +267,8 @@ class MultiLabelPrecisionRecallAccuracyFscoreTest(TestCase):
|
|
| 266 |
|
| 267 |
class MultiLabelPrecisionRecallAccuracyFscoreTestMultiset(MultiLabelPrecisionRecallAccuracyFscoreTest):
|
| 268 |
def setUp(self):
|
| 269 |
-
self.multi_label_precision_recall_accuracy_fscore = MultiLabelPrecisionRecallAccuracyFscore(
|
|
|
|
| 270 |
|
| 271 |
def test_multiset_eok(self):
|
| 272 |
self.assertDictEqual(
|
|
@@ -291,13 +293,12 @@ class MultiLabelPrecisionRecallAccuracyFscoreTestMultiset(MultiLabelPrecisionRec
|
|
| 291 |
)
|
| 292 |
|
| 293 |
def test_multiset_partial_match(self):
|
| 294 |
-
|
| 295 |
self.assertDictEqual(
|
| 296 |
{
|
| 297 |
"precision": 1.0,
|
| 298 |
"recall": 0.5,
|
| 299 |
"accuracy": 0.5,
|
| 300 |
-
"fscore": 2/3
|
| 301 |
},
|
| 302 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 303 |
predictions=[
|
|
@@ -310,15 +311,15 @@ class MultiLabelPrecisionRecallAccuracyFscoreTestMultiset(MultiLabelPrecisionRec
|
|
| 310 |
)
|
| 311 |
|
| 312 |
def test_multiset_partial_match_multi_sample(self):
|
| 313 |
-
p = (1+2/3) / 2
|
| 314 |
-
r = (3/4 + 1) / 2
|
| 315 |
|
| 316 |
self.assertDictEqual(
|
| 317 |
{
|
| 318 |
"precision": p,
|
| 319 |
"recall": r,
|
| 320 |
-
"accuracy": (3/4 + 2/3) / 2,
|
| 321 |
-
"fscore": 2*p*r / (p + r)
|
| 322 |
},
|
| 323 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 324 |
predictions=[
|
|
@@ -331,3 +332,74 @@ class MultiLabelPrecisionRecallAccuracyFscoreTestMultiset(MultiLabelPrecisionRec
|
|
| 331 |
]
|
| 332 |
)
|
| 333 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
All of these tests are also used for multiset configuration. So please mind this and write the test in a way that
|
| 9 |
it is valid for both configurations (do not use same label multiple times).
|
| 10 |
"""
|
| 11 |
+
|
| 12 |
def setUp(self):
|
| 13 |
self.multi_label_precision_recall_accuracy_fscore = MultiLabelPrecisionRecallAccuracyFscore()
|
| 14 |
|
|
|
|
| 150 |
"precision": 1.0,
|
| 151 |
"recall": 0.5,
|
| 152 |
"accuracy": 0.5,
|
| 153 |
+
"fscore": 2 / 3
|
| 154 |
},
|
| 155 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 156 |
predictions=[
|
|
|
|
| 168 |
"precision": 0.5,
|
| 169 |
"recall": 1.0,
|
| 170 |
"accuracy": 0.5,
|
| 171 |
+
"fscore": 2 / 3
|
| 172 |
},
|
| 173 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 174 |
predictions=[
|
|
|
|
| 185 |
{
|
| 186 |
"precision": 0.5,
|
| 187 |
"recall": 0.5,
|
| 188 |
+
"accuracy": 1 / 3,
|
| 189 |
"fscore": 0.5
|
| 190 |
},
|
| 191 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
|
|
|
| 201 |
def test_partial_match_multi_sample(self):
|
| 202 |
self.assertDictEqual(
|
| 203 |
{
|
| 204 |
+
"precision": 2.5 / 3,
|
| 205 |
+
"recall": 2 / 3,
|
| 206 |
"accuracy": 0.5,
|
| 207 |
+
"fscore": 2 * (2.5 / 3 * 2 / 3) / (2.5 / 3 + 2 / 3)
|
| 208 |
},
|
| 209 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 210 |
predictions=[
|
|
|
|
| 224 |
self.multi_label_precision_recall_accuracy_fscore.beta = 2
|
| 225 |
self.assertDictEqual(
|
| 226 |
{
|
| 227 |
+
"precision": 2.5 / 3,
|
| 228 |
+
"recall": 2 / 3,
|
| 229 |
"accuracy": 0.5,
|
| 230 |
+
"fscore": 5 * (2.5 / 3 * 2 / 3) / (4 * 2.5 / 3 + 2 / 3)
|
| 231 |
},
|
| 232 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 233 |
predictions=[
|
|
|
|
| 267 |
|
| 268 |
class MultiLabelPrecisionRecallAccuracyFscoreTestMultiset(MultiLabelPrecisionRecallAccuracyFscoreTest):
|
| 269 |
def setUp(self):
|
| 270 |
+
self.multi_label_precision_recall_accuracy_fscore = MultiLabelPrecisionRecallAccuracyFscore(
|
| 271 |
+
config_name="multiset")
|
| 272 |
|
| 273 |
def test_multiset_eok(self):
|
| 274 |
self.assertDictEqual(
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
def test_multiset_partial_match(self):
|
|
|
|
| 296 |
self.assertDictEqual(
|
| 297 |
{
|
| 298 |
"precision": 1.0,
|
| 299 |
"recall": 0.5,
|
| 300 |
"accuracy": 0.5,
|
| 301 |
+
"fscore": 2 / 3
|
| 302 |
},
|
| 303 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 304 |
predictions=[
|
|
|
|
| 311 |
)
|
| 312 |
|
| 313 |
def test_multiset_partial_match_multi_sample(self):
|
| 314 |
+
p = (1 + 2 / 3) / 2
|
| 315 |
+
r = (3 / 4 + 1) / 2
|
| 316 |
|
| 317 |
self.assertDictEqual(
|
| 318 |
{
|
| 319 |
"precision": p,
|
| 320 |
"recall": r,
|
| 321 |
+
"accuracy": (3 / 4 + 2 / 3) / 2,
|
| 322 |
+
"fscore": 2 * p * r / (p + r)
|
| 323 |
},
|
| 324 |
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 325 |
predictions=[
|
|
|
|
| 332 |
]
|
| 333 |
)
|
| 334 |
)
|
| 335 |
+
|
| 336 |
+
def test_zero_cardinality_precision(self):
|
| 337 |
+
self.multi_label_precision_recall_accuracy_fscore.zero_cardinality_precision = 0.5
|
| 338 |
+
self.assertEqual(0.5,
|
| 339 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 340 |
+
predictions=[
|
| 341 |
+
[]
|
| 342 |
+
],
|
| 343 |
+
references=[
|
| 344 |
+
[0, 1, 1],
|
| 345 |
+
]
|
| 346 |
+
)["precision"]
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
self.assertEqual(1.0,
|
| 350 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 351 |
+
predictions=[
|
| 352 |
+
[]
|
| 353 |
+
],
|
| 354 |
+
references=[
|
| 355 |
+
[],
|
| 356 |
+
]
|
| 357 |
+
)["precision"]
|
| 358 |
+
)
|
| 359 |
+
|
| 360 |
+
self.assertEqual(2 / 3,
|
| 361 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 362 |
+
predictions=[
|
| 363 |
+
[1, 2, 3]
|
| 364 |
+
],
|
| 365 |
+
references=[
|
| 366 |
+
[1, 2],
|
| 367 |
+
]
|
| 368 |
+
)["precision"]
|
| 369 |
+
)
|
| 370 |
+
|
| 371 |
+
def test_zero_cardinality_recall(self):
|
| 372 |
+
self.multi_label_precision_recall_accuracy_fscore.zero_cardinality_recall = 0.5
|
| 373 |
+
self.assertEqual(0.5,
|
| 374 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 375 |
+
predictions=[
|
| 376 |
+
[0, 1, 1],
|
| 377 |
+
],
|
| 378 |
+
references=[
|
| 379 |
+
[]
|
| 380 |
+
]
|
| 381 |
+
)["recall"]
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
self.assertEqual(1.0,
|
| 385 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 386 |
+
predictions=[
|
| 387 |
+
[],
|
| 388 |
+
],
|
| 389 |
+
references=[
|
| 390 |
+
[],
|
| 391 |
+
]
|
| 392 |
+
)["recall"]
|
| 393 |
+
)
|
| 394 |
+
|
| 395 |
+
self.assertEqual(2 / 3,
|
| 396 |
+
self.multi_label_precision_recall_accuracy_fscore.compute(
|
| 397 |
+
predictions=[
|
| 398 |
+
[1, 2],
|
| 399 |
+
],
|
| 400 |
+
references=[
|
| 401 |
+
[1, 2, 3]
|
| 402 |
+
]
|
| 403 |
+
)["recall"]
|
| 404 |
+
)
|
| 405 |
+
|