use autocast
Browse files
app.py
CHANGED
|
@@ -1,10 +1,14 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
import gradio as gr
|
| 3 |
from threading import Thread
|
| 4 |
-
|
|
|
|
|
|
|
|
|
|
| 5 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 6 |
import torch
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
| 8 |
|
| 9 |
# Define model options
|
| 10 |
MODEL_OPTIONS = {
|
|
@@ -39,23 +43,25 @@ def generate(
|
|
| 39 |
top_p = float(top_p)
|
| 40 |
|
| 41 |
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
|
|
|
|
|
|
| 52 |
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
|
| 57 |
-
|
| 58 |
-
|
| 59 |
|
| 60 |
# Write the prompt in blue
|
| 61 |
output = "<span style='color: blue;'>" + prompt + "</span>"
|
|
|
|
|
|
|
|
|
|
| 1 |
from threading import Thread
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
from gradio.layouts import Accordion
|
| 5 |
+
import spaces
|
| 6 |
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 7 |
import torch
|
| 8 |
+
|
| 9 |
+
from open_lm.hf import *
|
| 10 |
+
from open_lm.precision import get_autocast
|
| 11 |
+
|
| 12 |
|
| 13 |
# Define model options
|
| 14 |
MODEL_OPTIONS = {
|
|
|
|
| 43 |
top_p = float(top_p)
|
| 44 |
|
| 45 |
inputs = current_tokenizer(prompt, return_tensors="pt").to(current_model.device)
|
| 46 |
+
autocast = get_autocast("amp_bf16")
|
| 47 |
+
|
| 48 |
+
with autocast():
|
| 49 |
+
generate_kwargs = dict(
|
| 50 |
+
**inputs,
|
| 51 |
+
max_new_tokens=max_new_tokens,
|
| 52 |
+
temperature=temperature,
|
| 53 |
+
top_p=top_p,
|
| 54 |
+
repetition_penalty=repetition_penalty,
|
| 55 |
+
do_sample=True,
|
| 56 |
+
pad_token_id=current_tokenizer.eos_token_id
|
| 57 |
+
)
|
| 58 |
|
| 59 |
+
streamer = TextIteratorStreamer(current_tokenizer, skip_prompt=True, skip_special_tokens=False)
|
| 60 |
+
streamer.stop_signal = current_tokenizer.decode(current_tokenizer.eos_token_id)
|
| 61 |
+
generate_kwargs["streamer"] = streamer
|
| 62 |
|
| 63 |
+
thread = Thread(target=current_model.generate, kwargs=generate_kwargs)
|
| 64 |
+
thread.start()
|
| 65 |
|
| 66 |
# Write the prompt in blue
|
| 67 |
output = "<span style='color: blue;'>" + prompt + "</span>"
|