Commit
·
6136894
1
Parent(s):
aaa160e
Update app.py
Browse files
app.py
CHANGED
|
@@ -93,23 +93,25 @@ preprocess = weights.transforms()
|
|
| 93 |
resnet = resnet50(weights=weights)
|
| 94 |
resnet.eval()
|
| 95 |
|
| 96 |
-
def resize_image(
|
| 97 |
-
#
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
#resized_img.save(output_path)
|
| 107 |
-
return resized_img
|
| 108 |
|
| 109 |
# @spaces.GPU(enable_queue=True)
|
| 110 |
-
def inference(
|
| 111 |
-
input_image =
|
|
|
|
|
|
|
|
|
|
| 112 |
process_size = 768
|
|
|
|
| 113 |
resize_preproc = transforms.Compose([
|
| 114 |
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
| 115 |
])
|
|
@@ -171,7 +173,7 @@ with gr.Blocks() as demo:
|
|
| 171 |
with gr.Column():
|
| 172 |
with gr.Row():
|
| 173 |
with gr.Column():
|
| 174 |
-
|
| 175 |
prompt_in = gr.Textbox(label="Prompt", value="Frog")
|
| 176 |
with gr.Accordion(label="Advanced settings", open=False):
|
| 177 |
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
|
|
@@ -183,17 +185,17 @@ with gr.Blocks() as demo:
|
|
| 183 |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 184 |
submit_btn = gr.Button("Submit")
|
| 185 |
with gr.Column():
|
| 186 |
-
|
| 187 |
|
| 188 |
submit_btn.click(
|
| 189 |
fn = inference,
|
| 190 |
inputs = [
|
| 191 |
-
|
| 192 |
added_prompt, neg_prompt,
|
| 193 |
denoise_steps,
|
| 194 |
upsample_scale, condition_scale,
|
| 195 |
classifier_free_guidance, seed
|
| 196 |
],
|
| 197 |
-
outputs =
|
| 198 |
)
|
| 199 |
demo.queue().launch()
|
|
|
|
| 93 |
resnet = resnet50(weights=weights)
|
| 94 |
resnet.eval()
|
| 95 |
|
| 96 |
+
def resize_image(img, target_height):
|
| 97 |
+
# Calculate the ratio to resize the image to the target height
|
| 98 |
+
ratio = target_height / float(img.size[1])
|
| 99 |
+
# Calculate the new width based on the aspect ratio
|
| 100 |
+
new_width = int(float(img.size[0]) * ratio)
|
| 101 |
+
# Resize the image
|
| 102 |
+
resized_img = img.resize((new_width, target_height), Image.LANCZOS)
|
| 103 |
+
# Save the resized image
|
| 104 |
+
#resized_img.save(output_path)
|
| 105 |
+
return resized_img
|
|
|
|
|
|
|
| 106 |
|
| 107 |
# @spaces.GPU(enable_queue=True)
|
| 108 |
+
def inference(input_image_b64, prompt, a_prompt, n_prompt, denoise_steps, upscale, alpha, cfg, seed):
|
| 109 |
+
input_image = readb64(input_image_b64)
|
| 110 |
+
|
| 111 |
+
input_image = resize_image(input, 512)
|
| 112 |
+
|
| 113 |
process_size = 768
|
| 114 |
+
|
| 115 |
resize_preproc = transforms.Compose([
|
| 116 |
transforms.Resize(process_size, interpolation=transforms.InterpolationMode.BILINEAR),
|
| 117 |
])
|
|
|
|
| 173 |
with gr.Column():
|
| 174 |
with gr.Row():
|
| 175 |
with gr.Column():
|
| 176 |
+
input_image_b64 = gr.Textbox()
|
| 177 |
prompt_in = gr.Textbox(label="Prompt", value="Frog")
|
| 178 |
with gr.Accordion(label="Advanced settings", open=False):
|
| 179 |
added_prompt = gr.Textbox(label="Added Prompt", value='clean, high-resolution, 8k, best quality, masterpiece')
|
|
|
|
| 185 |
seed = gr.Slider(label="Seed", minimum=-1, maximum=2147483647, step=1, randomize=True)
|
| 186 |
submit_btn = gr.Button("Submit")
|
| 187 |
with gr.Column():
|
| 188 |
+
output_image_b64 = gr.Textbox()
|
| 189 |
|
| 190 |
submit_btn.click(
|
| 191 |
fn = inference,
|
| 192 |
inputs = [
|
| 193 |
+
input_image_b64, prompt_in,
|
| 194 |
added_prompt, neg_prompt,
|
| 195 |
denoise_steps,
|
| 196 |
upsample_scale, condition_scale,
|
| 197 |
classifier_free_guidance, seed
|
| 198 |
],
|
| 199 |
+
outputs = output_image_b64
|
| 200 |
)
|
| 201 |
demo.queue().launch()
|