File size: 7,200 Bytes
46861c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
# --------------------------------------------------------
# Copyright (2025) Bytedance Ltd. and/or its affiliates
# Licensed under the Apache License, Version 2.0 (the "License")
# Grasp Any Region Project
# Written by Haochen Wang and Yuhao Wang
# --------------------------------------------------------

import argparse
import base64
import io
import json
import os
import re

import numpy as np
import openai
from PIL import Image
from pycocotools import mask as mask_utils
from pycocotools.coco import COCO
from tqdm import tqdm

# Define Azure OpenAI details
model_name = "gpt-4o-2024-11-20"
max_tokens = 1000  # range: [1, 4095]

# Initialize the Azure client
client = openai.AzureOpenAI(
    azure_endpoint=os.getenv("AZURE_OPENAI_ENDPOINT"),
    api_key=os.getenv("AZURE_OPENAI_KEY"),
    api_version="2024-03-01-preview",
)

prompt_ann = """
You are a language model expert. Your task is to evaluate the following model output based on the provided images, and subject, object, and relationship.

- subject_name: {subject_name}
- object_name: {object_name}
- predicate_name: {predicate_name}
- model_output: {model_output}

Task:
1. Check if the model output describes the {subject_name}. 
2. Check if the model output conveys the relationship between {subject_name} and {object_name} related to {predicate_name}.

Note:
- The first task only requires checking if {subject_name} is mentioned in the model output.
- The second task asks if the output conveys a relationship related to {predicate_name} between {subject_name} and {object_name}, even if different words or phrases are used.
- If both tasks are successfully completed, return "True" Otherwise, return "False"
- Do not output any reasoning. Do not perform correction. Please output only just one "True" or "False".

"""


def process_questions(outputs):

    pattern = r"^```json\s*|\s*```$"
    try:
        cleaned_str = re.sub(pattern, "", outputs, flags=re.MULTILINE)
        questions_data = json.loads(cleaned_str)
    except:
        print("Error in parsing JSON")
        return []
    return questions_data


def encode_pil_image_to_base64(pil_image):
    buffered = io.BytesIO()
    pil_image.save(buffered, format="PNG")
    img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
    return img_str


def mask_to_box(mask_np):
    mask_coords = np.argwhere(mask_np)
    y0, x0 = mask_coords.min(axis=0)
    y1, x1 = mask_coords.max(axis=0) + 1

    h = y1 - y0
    w = x1 - x0

    return x0, y0, w, h


def query(messages):
    # Adjusted to use the Azure OpenAI client with the specified parameters
    response = client.chat.completions.create(
        model=model_name,
        messages=[{"role": "user", "content": content}],
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=1,
        frequency_penalty=0,
        presence_penalty=0,
    )

    message = response.choices[0].message.content
    return message


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description="Evaluate model outputs")
    parser.add_argument("--pred", type=str, help="Path to the model")
    parser.add_argument("--min_box_w", type=int, help="Minimum width", default=56)
    parser.add_argument("--min_box_h", type=int, help="Minimum height", default=56)
    parser.add_argument(
        "--image_folder", type=str, default="evaluation/GAR-Bench/annotations"
    )
    args = parser.parse_args()

    with open(args.pred, "r") as f:
        data = json.load(f)

    output_json = []
    total = 0
    true = 0

    for item in tqdm(data):
        total = total + 1
        model_output = item["model_output"]

        subject_name = item["subject_name"]
        object_name = item["object_name"]
        predicate_name = item["predicate_name"]
        model_output = item["model_output"]
        prompt = prompt_ann.format(
            subject_name=subject_name,
            object_name=object_name,
            predicate_name=predicate_name,
            model_output=model_output,
        )

        img = Image.open(os.path.join(args.image_folder, item["image"]))

        img_np = np.array(img)
        base64_image = encode_pil_image_to_base64(img)
        content = [
            {"type": "text", "text": "\n1. The original image:\n"},
            {
                "type": "image_url",
                "image_url": {"url": f"data:image/jpeg;base64,{base64_image}"},
            },
        ]

        for mask_idx, mask_rle in enumerate(item["mask_rles"]):
            mask_np = mask_utils.decode(mask_rle).astype(np.uint8)
            pil_mask = Image.fromarray((mask_np * 255).astype(np.uint8))

            assert (
                img_np.shape[:2] == mask_np.shape
            ), f"image shape mismatches with mask shape: {img_np.shape}, {mask_np.shape}"
            img_h, img_w = img_np.shape[:2]

            x0, y0, w, h = mask_to_box(mask_np)
            xc, yc = x0 + w / 2, y0 + h / 2

            # focal_crop: need to have at least min_box_w and min_box_h pixels, otherwise resizing to (384, 384) leads to artifacts that may be OOD
            w, h = max(w, args.min_box_w), max(h, args.min_box_h)
            x0, y0 = int(xc - w / 2), int(yc - h / 2)

            cropped_mask_np = mask_np[
                max(y0 - h, 0) : min(y0 + 2 * h, img_h),
                max(x0 - w, 0) : min(x0 + 2 * w, img_w),
            ]
            cropped_img_np = img_np[
                max(y0 - h, 0) : min(y0 + 2 * h, img_h),
                max(x0 - w, 0) : min(x0 + 2 * w, img_w),
            ]

            cropped_pil_img = Image.fromarray(cropped_img_np)
            cropped_pil_mask = Image.fromarray((cropped_mask_np * 255).astype(np.uint8))

            base64_cropped_image = encode_pil_image_to_base64(cropped_pil_img)
            base64_cropped_mask = encode_pil_image_to_base64(cropped_pil_mask)

            content.extend(
                [
                    {
                        "type": "text",
                        "text": f"\n{2 * mask_idx + 2}. <Prompt{mask_idx}>:\n",
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_cropped_image}"
                        },
                    },
                    {
                        "type": "text",
                        "text": f"\n{2 * mask_idx + 3}. The mask of <Prompt{mask_idx}>:\n",
                    },
                    {
                        "type": "image_url",
                        "image_url": {
                            "url": f"data:image/jpeg;base64,{base64_cropped_mask}"
                        },
                    },
                ]
            )

        content.append({"type": "text", "text": prompt})

        messages = [{"role": "user", "content": content}]

        outputs = query(messages)
        print(outputs)
        if outputs == "True":
            true = true + 1
        item.update({"eval_result": outputs})
        output_json.append(item)

    print("Accuracy: ", true / total)
    with open(args.pred.replace(".json", "_eval.json"), "w") as f:
        json.dump(output_json, f, indent=4)