import numpy as np import torch.nn as nn import torch import torch.nn.functional as F class MLP(nn.Module): """ Linear Embedding: """ def __init__(self, input_dim=2048, embed_dim=768): super().__init__() self.proj = nn.Linear(input_dim, embed_dim) def forward(self, x): x = x.flatten(2).transpose(1, 2) x = self.proj(x) return x class DecoderHead(nn.Module): def __init__(self, in_channels=[64, 128, 320, 512], num_classes=40, dropout_ratio=0.1, norm_layer=nn.BatchNorm2d, embed_dim=768, align_corners=False): super(DecoderHead, self).__init__() self.num_classes = num_classes self.dropout_ratio = dropout_ratio self.align_corners = align_corners self.in_channels = in_channels if dropout_ratio > 0: self.dropout = nn.Dropout2d(dropout_ratio) else: self.dropout = None c1_in_channels, c2_in_channels, c3_in_channels, c4_in_channels = self.in_channels embedding_dim = embed_dim self.linear_c4 = MLP(input_dim=c4_in_channels, embed_dim=embedding_dim) self.linear_c3 = MLP(input_dim=c3_in_channels, embed_dim=embedding_dim) self.linear_c2 = MLP(input_dim=c2_in_channels, embed_dim=embedding_dim) self.linear_c1 = MLP(input_dim=c1_in_channels, embed_dim=embedding_dim) self.linear_fuse = nn.Sequential( nn.Conv2d(in_channels=embedding_dim*4, out_channels=embedding_dim, kernel_size=1), norm_layer(embedding_dim), nn.ReLU(inplace=True) ) self.linear_pred = nn.Conv2d(embedding_dim, self.num_classes, kernel_size=1) def forward(self, inputs, return_feats=False): # len=4, 1/4,1/8,1/16,1/32 c1, c2, c3, c4 = inputs ############## MLP decoder on C1-C4 ########### n, _, h, w = c4.shape _c4 = self.linear_c4(c4).permute(0,2,1).reshape(n, -1, c4.shape[2], c4.shape[3]) _c4 = F.interpolate(_c4, size=c1.size()[2:],mode='bilinear',align_corners=self.align_corners) _c3 = self.linear_c3(c3).permute(0,2,1).reshape(n, -1, c3.shape[2], c3.shape[3]) _c3 = F.interpolate(_c3, size=c1.size()[2:],mode='bilinear',align_corners=self.align_corners) _c2 = self.linear_c2(c2).permute(0,2,1).reshape(n, -1, c2.shape[2], c2.shape[3]) _c2 = F.interpolate(_c2, size=c1.size()[2:],mode='bilinear',align_corners=self.align_corners) _c1 = self.linear_c1(c1).permute(0,2,1).reshape(n, -1, c1.shape[2], c1.shape[3]) _c = torch.cat([_c4, _c3, _c2, _c1], dim=1) x = self.linear_fuse(_c) x = self.dropout(x) x = self.linear_pred(x) if return_feats: return x, _c else: return x