Spaces:
Running
Running
| # Adapted from: https://github.com/huggingface/diffusers/blob/v0.26.3/src/diffusers/models/transformers/transformer_2d.py | |
| import math | |
| from dataclasses import dataclass | |
| from typing import Any, Dict, List, Optional, Literal | |
| import torch | |
| from diffusers.configuration_utils import ConfigMixin, register_to_config | |
| from diffusers.models.embeddings import PixArtAlphaTextProjection | |
| from diffusers.models.modeling_utils import ModelMixin | |
| from diffusers.models.normalization import AdaLayerNormSingle | |
| from diffusers.utils import BaseOutput, is_torch_version | |
| from diffusers.utils import logging | |
| from torch import nn | |
| from xora.models.transformers.attention import BasicTransformerBlock | |
| from xora.models.transformers.embeddings import get_3d_sincos_pos_embed | |
| logger = logging.get_logger(__name__) | |
| class Transformer3DModelOutput(BaseOutput): | |
| """ | |
| The output of [`Transformer2DModel`]. | |
| Args: | |
| sample (`torch.FloatTensor` of shape `(batch_size, num_channels, height, width)` or `(batch size, num_vector_embeds - 1, num_latent_pixels)` if [`Transformer2DModel`] is discrete): | |
| The hidden states output conditioned on the `encoder_hidden_states` input. If discrete, returns probability | |
| distributions for the unnoised latent pixels. | |
| """ | |
| sample: torch.FloatTensor | |
| class Transformer3DModel(ModelMixin, ConfigMixin): | |
| _supports_gradient_checkpointing = True | |
| def __init__( | |
| self, | |
| num_attention_heads: int = 16, | |
| attention_head_dim: int = 88, | |
| in_channels: Optional[int] = None, | |
| out_channels: Optional[int] = None, | |
| num_layers: int = 1, | |
| dropout: float = 0.0, | |
| norm_num_groups: int = 32, | |
| cross_attention_dim: Optional[int] = None, | |
| attention_bias: bool = False, | |
| num_vector_embeds: Optional[int] = None, | |
| activation_fn: str = "geglu", | |
| num_embeds_ada_norm: Optional[int] = None, | |
| use_linear_projection: bool = False, | |
| only_cross_attention: bool = False, | |
| double_self_attention: bool = False, | |
| upcast_attention: bool = False, | |
| adaptive_norm: str = "single_scale_shift", # 'single_scale_shift' or 'single_scale' | |
| standardization_norm: str = "layer_norm", # 'layer_norm' or 'rms_norm' | |
| norm_elementwise_affine: bool = True, | |
| norm_eps: float = 1e-5, | |
| attention_type: str = "default", | |
| caption_channels: int = None, | |
| project_to_2d_pos: bool = False, | |
| use_tpu_flash_attention: bool = False, # if True uses the TPU attention offload ('flash attention') | |
| qk_norm: Optional[str] = None, | |
| positional_embedding_type: str = "absolute", | |
| positional_embedding_theta: Optional[float] = None, | |
| positional_embedding_max_pos: Optional[List[int]] = None, | |
| timestep_scale_multiplier: Optional[float] = None, | |
| ): | |
| super().__init__() | |
| self.use_tpu_flash_attention = ( | |
| use_tpu_flash_attention # FIXME: push config down to the attention modules | |
| ) | |
| self.use_linear_projection = use_linear_projection | |
| self.num_attention_heads = num_attention_heads | |
| self.attention_head_dim = attention_head_dim | |
| inner_dim = num_attention_heads * attention_head_dim | |
| self.inner_dim = inner_dim | |
| self.project_to_2d_pos = project_to_2d_pos | |
| self.patchify_proj = nn.Linear(in_channels, inner_dim, bias=True) | |
| self.positional_embedding_type = positional_embedding_type | |
| self.positional_embedding_theta = positional_embedding_theta | |
| self.positional_embedding_max_pos = positional_embedding_max_pos | |
| self.use_rope = self.positional_embedding_type == "rope" | |
| self.timestep_scale_multiplier = timestep_scale_multiplier | |
| if self.positional_embedding_type == "absolute": | |
| embed_dim_3d = ( | |
| math.ceil((inner_dim / 2) * 3) if project_to_2d_pos else inner_dim | |
| ) | |
| if self.project_to_2d_pos: | |
| self.to_2d_proj = torch.nn.Linear(embed_dim_3d, inner_dim, bias=False) | |
| self._init_to_2d_proj_weights(self.to_2d_proj) | |
| elif self.positional_embedding_type == "rope": | |
| if positional_embedding_theta is None: | |
| raise ValueError( | |
| "If `positional_embedding_type` type is rope, `positional_embedding_theta` must also be defined" | |
| ) | |
| if positional_embedding_max_pos is None: | |
| raise ValueError( | |
| "If `positional_embedding_type` type is rope, `positional_embedding_max_pos` must also be defined" | |
| ) | |
| # 3. Define transformers blocks | |
| self.transformer_blocks = nn.ModuleList( | |
| [ | |
| BasicTransformerBlock( | |
| inner_dim, | |
| num_attention_heads, | |
| attention_head_dim, | |
| dropout=dropout, | |
| cross_attention_dim=cross_attention_dim, | |
| activation_fn=activation_fn, | |
| num_embeds_ada_norm=num_embeds_ada_norm, | |
| attention_bias=attention_bias, | |
| only_cross_attention=only_cross_attention, | |
| double_self_attention=double_self_attention, | |
| upcast_attention=upcast_attention, | |
| adaptive_norm=adaptive_norm, | |
| standardization_norm=standardization_norm, | |
| norm_elementwise_affine=norm_elementwise_affine, | |
| norm_eps=norm_eps, | |
| attention_type=attention_type, | |
| use_tpu_flash_attention=use_tpu_flash_attention, | |
| qk_norm=qk_norm, | |
| use_rope=self.use_rope, | |
| ) | |
| for d in range(num_layers) | |
| ] | |
| ) | |
| # 4. Define output layers | |
| self.out_channels = in_channels if out_channels is None else out_channels | |
| self.norm_out = nn.LayerNorm(inner_dim, elementwise_affine=False, eps=1e-6) | |
| self.scale_shift_table = nn.Parameter( | |
| torch.randn(2, inner_dim) / inner_dim**0.5 | |
| ) | |
| self.proj_out = nn.Linear(inner_dim, self.out_channels) | |
| self.adaln_single = AdaLayerNormSingle( | |
| inner_dim, use_additional_conditions=False | |
| ) | |
| if adaptive_norm == "single_scale": | |
| self.adaln_single.linear = nn.Linear(inner_dim, 4 * inner_dim, bias=True) | |
| self.caption_projection = None | |
| if caption_channels is not None: | |
| self.caption_projection = PixArtAlphaTextProjection( | |
| in_features=caption_channels, hidden_size=inner_dim | |
| ) | |
| self.gradient_checkpointing = False | |
| def set_use_tpu_flash_attention(self): | |
| r""" | |
| Function sets the flag in this object and propagates down the children. The flag will enforce the usage of TPU | |
| attention kernel. | |
| """ | |
| logger.info("ENABLE TPU FLASH ATTENTION -> TRUE") | |
| self.use_tpu_flash_attention = True | |
| # push config down to the attention modules | |
| for block in self.transformer_blocks: | |
| block.set_use_tpu_flash_attention() | |
| def initialize(self, embedding_std: float, mode: Literal["xora", "legacy"]): | |
| def _basic_init(module): | |
| if isinstance(module, nn.Linear): | |
| torch.nn.init.xavier_uniform_(module.weight) | |
| if module.bias is not None: | |
| nn.init.constant_(module.bias, 0) | |
| self.apply(_basic_init) | |
| # Initialize timestep embedding MLP: | |
| nn.init.normal_( | |
| self.adaln_single.emb.timestep_embedder.linear_1.weight, std=embedding_std | |
| ) | |
| nn.init.normal_( | |
| self.adaln_single.emb.timestep_embedder.linear_2.weight, std=embedding_std | |
| ) | |
| nn.init.normal_(self.adaln_single.linear.weight, std=embedding_std) | |
| if hasattr(self.adaln_single.emb, "resolution_embedder"): | |
| nn.init.normal_( | |
| self.adaln_single.emb.resolution_embedder.linear_1.weight, | |
| std=embedding_std, | |
| ) | |
| nn.init.normal_( | |
| self.adaln_single.emb.resolution_embedder.linear_2.weight, | |
| std=embedding_std, | |
| ) | |
| if hasattr(self.adaln_single.emb, "aspect_ratio_embedder"): | |
| nn.init.normal_( | |
| self.adaln_single.emb.aspect_ratio_embedder.linear_1.weight, | |
| std=embedding_std, | |
| ) | |
| nn.init.normal_( | |
| self.adaln_single.emb.aspect_ratio_embedder.linear_2.weight, | |
| std=embedding_std, | |
| ) | |
| # Initialize caption embedding MLP: | |
| nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std) | |
| nn.init.normal_(self.caption_projection.linear_1.weight, std=embedding_std) | |
| for block in self.transformer_blocks: | |
| if mode.lower() == "xora": | |
| nn.init.constant_(block.attn1.to_out[0].weight, 0) | |
| nn.init.constant_(block.attn1.to_out[0].bias, 0) | |
| nn.init.constant_(block.attn2.to_out[0].weight, 0) | |
| nn.init.constant_(block.attn2.to_out[0].bias, 0) | |
| if mode.lower() == "xora": | |
| nn.init.constant_(block.ff.net[2].weight, 0) | |
| nn.init.constant_(block.ff.net[2].bias, 0) | |
| # Zero-out output layers: | |
| nn.init.constant_(self.proj_out.weight, 0) | |
| nn.init.constant_(self.proj_out.bias, 0) | |
| def _set_gradient_checkpointing(self, module, value=False): | |
| if hasattr(module, "gradient_checkpointing"): | |
| module.gradient_checkpointing = value | |
| def _init_to_2d_proj_weights(linear_layer): | |
| input_features = linear_layer.weight.data.size(1) | |
| output_features = linear_layer.weight.data.size(0) | |
| # Start with a zero matrix | |
| identity_like = torch.zeros((output_features, input_features)) | |
| # Fill the diagonal with 1's as much as possible | |
| min_features = min(output_features, input_features) | |
| identity_like[:min_features, :min_features] = torch.eye(min_features) | |
| linear_layer.weight.data = identity_like.to(linear_layer.weight.data.device) | |
| def get_fractional_positions(self, indices_grid): | |
| fractional_positions = torch.stack( | |
| [ | |
| indices_grid[:, i] / self.positional_embedding_max_pos[i] | |
| for i in range(3) | |
| ], | |
| dim=-1, | |
| ) | |
| return fractional_positions | |
| def precompute_freqs_cis(self, indices_grid, spacing="exp"): | |
| dtype = torch.float32 # We need full precision in the freqs_cis computation. | |
| dim = self.inner_dim | |
| theta = self.positional_embedding_theta | |
| fractional_positions = self.get_fractional_positions(indices_grid) | |
| start = 1 | |
| end = theta | |
| device = fractional_positions.device | |
| if spacing == "exp": | |
| indices = theta ** ( | |
| torch.linspace( | |
| math.log(start, theta), | |
| math.log(end, theta), | |
| dim // 6, | |
| device=device, | |
| dtype=dtype, | |
| ) | |
| ) | |
| indices = indices.to(dtype=dtype) | |
| elif spacing == "exp_2": | |
| indices = 1.0 / theta ** (torch.arange(0, dim, 6, device=device) / dim) | |
| indices = indices.to(dtype=dtype) | |
| elif spacing == "linear": | |
| indices = torch.linspace(start, end, dim // 6, device=device, dtype=dtype) | |
| elif spacing == "sqrt": | |
| indices = torch.linspace( | |
| start**2, end**2, dim // 6, device=device, dtype=dtype | |
| ).sqrt() | |
| indices = indices * math.pi / 2 | |
| if spacing == "exp_2": | |
| freqs = ( | |
| (indices * fractional_positions.unsqueeze(-1)) | |
| .transpose(-1, -2) | |
| .flatten(2) | |
| ) | |
| else: | |
| freqs = ( | |
| (indices * (fractional_positions.unsqueeze(-1) * 2 - 1)) | |
| .transpose(-1, -2) | |
| .flatten(2) | |
| ) | |
| cos_freq = freqs.cos().repeat_interleave(2, dim=-1) | |
| sin_freq = freqs.sin().repeat_interleave(2, dim=-1) | |
| if dim % 6 != 0: | |
| cos_padding = torch.ones_like(cos_freq[:, :, : dim % 6]) | |
| sin_padding = torch.zeros_like(cos_freq[:, :, : dim % 6]) | |
| cos_freq = torch.cat([cos_padding, cos_freq], dim=-1) | |
| sin_freq = torch.cat([sin_padding, sin_freq], dim=-1) | |
| return cos_freq.to(self.dtype), sin_freq.to(self.dtype) | |
| def forward( | |
| self, | |
| hidden_states: torch.Tensor, | |
| indices_grid: torch.Tensor, | |
| encoder_hidden_states: Optional[torch.Tensor] = None, | |
| timestep: Optional[torch.LongTensor] = None, | |
| class_labels: Optional[torch.LongTensor] = None, | |
| cross_attention_kwargs: Dict[str, Any] = None, | |
| attention_mask: Optional[torch.Tensor] = None, | |
| encoder_attention_mask: Optional[torch.Tensor] = None, | |
| return_dict: bool = True, | |
| ): | |
| """ | |
| The [`Transformer2DModel`] forward method. | |
| Args: | |
| hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous): | |
| Input `hidden_states`. | |
| indices_grid (`torch.LongTensor` of shape `(batch size, 3, num latent pixels)`): | |
| encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*): | |
| Conditional embeddings for cross attention layer. If not given, cross-attention defaults to | |
| self-attention. | |
| timestep ( `torch.LongTensor`, *optional*): | |
| Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`. | |
| class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*): | |
| Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in | |
| `AdaLayerZeroNorm`. | |
| cross_attention_kwargs ( `Dict[str, Any]`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| attention_mask ( `torch.Tensor`, *optional*): | |
| An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask | |
| is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large | |
| negative values to the attention scores corresponding to "discard" tokens. | |
| encoder_attention_mask ( `torch.Tensor`, *optional*): | |
| Cross-attention mask applied to `encoder_hidden_states`. Two formats supported: | |
| * Mask `(batch, sequence_length)` True = keep, False = discard. | |
| * Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard. | |
| If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format | |
| above. This bias will be added to the cross-attention scores. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~models.unets.unet_2d_condition.UNet2DConditionOutput`] instead of a plain | |
| tuple. | |
| Returns: | |
| If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a | |
| `tuple` where the first element is the sample tensor. | |
| """ | |
| # for tpu attention offload 2d token masks are used. No need to transform. | |
| if not self.use_tpu_flash_attention: | |
| # ensure attention_mask is a bias, and give it a singleton query_tokens dimension. | |
| # we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward. | |
| # we can tell by counting dims; if ndim == 2: it's a mask rather than a bias. | |
| # expects mask of shape: | |
| # [batch, key_tokens] | |
| # adds singleton query_tokens dimension: | |
| # [batch, 1, key_tokens] | |
| # this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes: | |
| # [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn) | |
| # [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn) | |
| if attention_mask is not None and attention_mask.ndim == 2: | |
| # assume that mask is expressed as: | |
| # (1 = keep, 0 = discard) | |
| # convert mask into a bias that can be added to attention scores: | |
| # (keep = +0, discard = -10000.0) | |
| attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0 | |
| attention_mask = attention_mask.unsqueeze(1) | |
| # convert encoder_attention_mask to a bias the same way we do for attention_mask | |
| if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2: | |
| encoder_attention_mask = ( | |
| 1 - encoder_attention_mask.to(hidden_states.dtype) | |
| ) * -10000.0 | |
| encoder_attention_mask = encoder_attention_mask.unsqueeze(1) | |
| # 1. Input | |
| hidden_states = self.patchify_proj(hidden_states) | |
| if self.timestep_scale_multiplier: | |
| timestep = self.timestep_scale_multiplier * timestep | |
| if self.positional_embedding_type == "absolute": | |
| pos_embed_3d = self.get_absolute_pos_embed(indices_grid).to( | |
| hidden_states.device | |
| ) | |
| if self.project_to_2d_pos: | |
| pos_embed = self.to_2d_proj(pos_embed_3d) | |
| hidden_states = (hidden_states + pos_embed).to(hidden_states.dtype) | |
| freqs_cis = None | |
| elif self.positional_embedding_type == "rope": | |
| freqs_cis = self.precompute_freqs_cis(indices_grid) | |
| batch_size = hidden_states.shape[0] | |
| timestep, embedded_timestep = self.adaln_single( | |
| timestep.flatten(), | |
| {"resolution": None, "aspect_ratio": None}, | |
| batch_size=batch_size, | |
| hidden_dtype=hidden_states.dtype, | |
| ) | |
| # Second dimension is 1 or number of tokens (if timestep_per_token) | |
| timestep = timestep.view(batch_size, -1, timestep.shape[-1]) | |
| embedded_timestep = embedded_timestep.view( | |
| batch_size, -1, embedded_timestep.shape[-1] | |
| ) | |
| # 2. Blocks | |
| if self.caption_projection is not None: | |
| batch_size = hidden_states.shape[0] | |
| encoder_hidden_states = self.caption_projection(encoder_hidden_states) | |
| encoder_hidden_states = encoder_hidden_states.view( | |
| batch_size, -1, hidden_states.shape[-1] | |
| ) | |
| for block in self.transformer_blocks: | |
| if self.training and self.gradient_checkpointing: | |
| def create_custom_forward(module, return_dict=None): | |
| def custom_forward(*inputs): | |
| if return_dict is not None: | |
| return module(*inputs, return_dict=return_dict) | |
| else: | |
| return module(*inputs) | |
| return custom_forward | |
| ckpt_kwargs: Dict[str, Any] = ( | |
| {"use_reentrant": False} if is_torch_version(">=", "1.11.0") else {} | |
| ) | |
| hidden_states = torch.utils.checkpoint.checkpoint( | |
| create_custom_forward(block), | |
| hidden_states, | |
| freqs_cis, | |
| attention_mask, | |
| encoder_hidden_states, | |
| encoder_attention_mask, | |
| timestep, | |
| cross_attention_kwargs, | |
| class_labels, | |
| **ckpt_kwargs, | |
| ) | |
| else: | |
| hidden_states = block( | |
| hidden_states, | |
| freqs_cis=freqs_cis, | |
| attention_mask=attention_mask, | |
| encoder_hidden_states=encoder_hidden_states, | |
| encoder_attention_mask=encoder_attention_mask, | |
| timestep=timestep, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| class_labels=class_labels, | |
| ) | |
| # 3. Output | |
| scale_shift_values = ( | |
| self.scale_shift_table[None, None] + embedded_timestep[:, :, None] | |
| ) | |
| shift, scale = scale_shift_values[:, :, 0], scale_shift_values[:, :, 1] | |
| hidden_states = self.norm_out(hidden_states) | |
| # Modulation | |
| hidden_states = hidden_states * (1 + scale) + shift | |
| hidden_states = self.proj_out(hidden_states) | |
| if not return_dict: | |
| return (hidden_states,) | |
| return Transformer3DModelOutput(sample=hidden_states) | |
| def get_absolute_pos_embed(self, grid): | |
| grid_np = grid[0].cpu().numpy() | |
| embed_dim_3d = ( | |
| math.ceil((self.inner_dim / 2) * 3) | |
| if self.project_to_2d_pos | |
| else self.inner_dim | |
| ) | |
| pos_embed = get_3d_sincos_pos_embed( # (f h w) | |
| embed_dim_3d, | |
| grid_np, | |
| h=int(max(grid_np[1]) + 1), | |
| w=int(max(grid_np[2]) + 1), | |
| f=int(max(grid_np[0] + 1)), | |
| ) | |
| return torch.from_numpy(pos_embed).float().unsqueeze(0) | |