Upload folder using huggingface_hub
Browse files
requirements.txt
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
-
gradio
|
| 2 |
-
torch
|
| 3 |
-
transformers
|
| 4 |
-
sentence-transformers
|
| 5 |
-
faiss-cpu
|
| 6 |
-
tqdm
|
| 7 |
-
chromadb
|
|
|
|
| 1 |
+
gradio
|
| 2 |
+
torch
|
| 3 |
+
transformers
|
| 4 |
+
sentence-transformers
|
| 5 |
+
faiss-cpu
|
| 6 |
+
tqdm
|
|
|
retriever/vectordb_rerank.py
CHANGED
|
@@ -19,7 +19,7 @@ embedding_models = [
|
|
| 19 |
# law_db config v2
|
| 20 |
CHROMA_PATH = os.path.abspath("data/index/law_db")
|
| 21 |
COLLECTION_NAME = "law_all"
|
| 22 |
-
EMBEDDING_MODEL_NAME = embedding_models[
|
| 23 |
|
| 24 |
|
| 25 |
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
|
|
|
|
| 19 |
# law_db config v2
|
| 20 |
CHROMA_PATH = os.path.abspath("data/index/law_db")
|
| 21 |
COLLECTION_NAME = "law_all"
|
| 22 |
+
EMBEDDING_MODEL_NAME = embedding_models[0] # μ¬μ©νκ³ μ νλ λͺ¨λΈ μ ν
|
| 23 |
|
| 24 |
|
| 25 |
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
|
retriever/vectordb_rerank_exam.py
CHANGED
|
@@ -19,7 +19,7 @@ embedding_models = [
|
|
| 19 |
# law_db config v2
|
| 20 |
CHROMA_PATH = os.path.abspath("data/index/exam_db")
|
| 21 |
COLLECTION_NAME = "exam_all"
|
| 22 |
-
EMBEDDING_MODEL_NAME = embedding_models[
|
| 23 |
|
| 24 |
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
|
| 25 |
# embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
|
|
|
| 19 |
# law_db config v2
|
| 20 |
CHROMA_PATH = os.path.abspath("data/index/exam_db")
|
| 21 |
COLLECTION_NAME = "exam_all"
|
| 22 |
+
EMBEDDING_MODEL_NAME = embedding_models[0] # μ¬μ©νκ³ μ νλ λͺ¨λΈ μ ν
|
| 23 |
|
| 24 |
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
|
| 25 |
# embedding_model = SentenceTransformer("sentence-transformers/all-MiniLM-L6-v2")
|
retriever/vectordb_rerank_law.py
CHANGED
|
@@ -19,7 +19,7 @@ embedding_models = [
|
|
| 19 |
# law_db config v2
|
| 20 |
CHROMA_PATH = os.path.abspath("data/index/law_db")
|
| 21 |
COLLECTION_NAME = "law_all"
|
| 22 |
-
EMBEDDING_MODEL_NAME = embedding_models[
|
| 23 |
|
| 24 |
|
| 25 |
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
|
|
|
|
| 19 |
# law_db config v2
|
| 20 |
CHROMA_PATH = os.path.abspath("data/index/law_db")
|
| 21 |
COLLECTION_NAME = "law_all"
|
| 22 |
+
EMBEDDING_MODEL_NAME = embedding_models[0] # μ¬μ©νκ³ μ νλ λͺ¨λΈ μ ν
|
| 23 |
|
| 24 |
|
| 25 |
# 1. μλ² λ© λͺ¨λΈ λ‘λ v2
|