Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -91,13 +91,32 @@ def evaluate_model(labels, preds):
|
|
| 91 |
|
| 92 |
return accuracy, roc_score, report, fig, fig_roc
|
| 93 |
|
| 94 |
-
# Gradio function for batch image processing
|
| 95 |
def process_zip(zip_file):
|
| 96 |
extracted_dir = extract_zip(zip_file.name)
|
| 97 |
-
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
shutil.rmtree(extracted_dir) # Clean up extracted files
|
| 100 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 101 |
|
| 102 |
# Single image classification functions
|
| 103 |
def image_classifier0(image):
|
|
@@ -127,87 +146,6 @@ def image_classifier2(image):
|
|
| 127 |
fin_sum.append(results)
|
| 128 |
return results
|
| 129 |
|
| 130 |
-
def aiornot0(image):
|
| 131 |
-
labels = ["AI", "Real"]
|
| 132 |
-
mod = models[0]
|
| 133 |
-
feature_extractor0 = AutoFeatureExtractor.from_pretrained(mod)
|
| 134 |
-
model0 = AutoModelForImageClassification.from_pretrained(mod)
|
| 135 |
-
input = feature_extractor0(image, return_tensors="pt")
|
| 136 |
-
with torch.no_grad():
|
| 137 |
-
outputs = model0(**input)
|
| 138 |
-
logits = outputs.logits
|
| 139 |
-
probability = softmax(logits) # Apply softmax on logits
|
| 140 |
-
px = pd.DataFrame(probability.numpy())
|
| 141 |
-
prediction = logits.argmax(-1).item()
|
| 142 |
-
label = labels[prediction]
|
| 143 |
-
|
| 144 |
-
html_out = f"""
|
| 145 |
-
<h1>This image is likely: {label}</h1><br><h3>
|
| 146 |
-
Probabilities:<br>
|
| 147 |
-
Real: {float(px[1][0]):.4f}<br>
|
| 148 |
-
AI: {float(px[0][0]):.4f}"""
|
| 149 |
-
|
| 150 |
-
results = {
|
| 151 |
-
"Real": float(px[1][0]),
|
| 152 |
-
"AI": float(px[0][0])
|
| 153 |
-
}
|
| 154 |
-
fin_sum.append(results)
|
| 155 |
-
return gr.HTML.update(html_out), results
|
| 156 |
-
|
| 157 |
-
def aiornot1(image):
|
| 158 |
-
labels = ["AI", "Real"]
|
| 159 |
-
mod = models[1]
|
| 160 |
-
feature_extractor1 = AutoFeatureExtractor.from_pretrained(mod)
|
| 161 |
-
model1 = AutoModelForImageClassification.from_pretrained(mod)
|
| 162 |
-
input = feature_extractor1(image, return_tensors="pt")
|
| 163 |
-
with torch.no_grad():
|
| 164 |
-
outputs = model1(**input)
|
| 165 |
-
logits = outputs.logits
|
| 166 |
-
probability = softmax(logits) # Apply softmax on logits
|
| 167 |
-
px = pd.DataFrame(probability.numpy())
|
| 168 |
-
prediction = logits.argmax(-1).item()
|
| 169 |
-
label = labels[prediction]
|
| 170 |
-
|
| 171 |
-
html_out = f"""
|
| 172 |
-
<h1>This image is likely: {label}</h1><br><h3>
|
| 173 |
-
Probabilities:<br>
|
| 174 |
-
Real: {float(px[1][0]):.4f}<br>
|
| 175 |
-
AI: {float(px[0][0]):.4f}"""
|
| 176 |
-
|
| 177 |
-
results = {
|
| 178 |
-
"Real": float(px[1][0]),
|
| 179 |
-
"AI": float(px[0][0])
|
| 180 |
-
}
|
| 181 |
-
fin_sum.append(results)
|
| 182 |
-
return gr.HTML.update(html_out), results
|
| 183 |
-
|
| 184 |
-
def aiornot2(image):
|
| 185 |
-
labels = ["AI", "Real"]
|
| 186 |
-
mod = models[2]
|
| 187 |
-
feature_extractor2 = AutoFeatureExtractor.from_pretrained(mod)
|
| 188 |
-
model2 = AutoModelForImageClassification.from_pretrained(mod)
|
| 189 |
-
input = feature_extractor2(image, return_tensors="pt")
|
| 190 |
-
with torch.no_grad():
|
| 191 |
-
outputs = model2(**input)
|
| 192 |
-
logits = outputs.logits
|
| 193 |
-
probability = softmax(logits) # Apply softmax on logits
|
| 194 |
-
px = pd.DataFrame(probability.numpy())
|
| 195 |
-
prediction = logits.argmax(-1).item()
|
| 196 |
-
label = labels[prediction]
|
| 197 |
-
|
| 198 |
-
html_out = f"""
|
| 199 |
-
<h1>This image is likely: {label}</h1><br><h3>
|
| 200 |
-
Probabilities:<br>
|
| 201 |
-
Real: {float(px[1][0]):.4f}<br>
|
| 202 |
-
AI: {float(px[0][0]):.4f}"""
|
| 203 |
-
|
| 204 |
-
results = {
|
| 205 |
-
"Real": float(px[1][0]),
|
| 206 |
-
"AI": float(px[0][0])
|
| 207 |
-
}
|
| 208 |
-
fin_sum.append(results)
|
| 209 |
-
return gr.HTML.update(html_out), results
|
| 210 |
-
|
| 211 |
def load_url(url):
|
| 212 |
try:
|
| 213 |
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
|
|
@@ -235,12 +173,6 @@ def fin_clear():
|
|
| 235 |
fin_sum.clear()
|
| 236 |
return None
|
| 237 |
|
| 238 |
-
def upd(image):
|
| 239 |
-
rand_im = uuid.uuid4()
|
| 240 |
-
image.save(f"{rand_im}-vid_tmp_proc.png")
|
| 241 |
-
out = Image.open(f"{rand_im}-vid_tmp_proc.png")
|
| 242 |
-
return out
|
| 243 |
-
|
| 244 |
# Set up Gradio app
|
| 245 |
with gr.Blocks() as app:
|
| 246 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
|
|
@@ -269,11 +201,6 @@ with gr.Blocks() as app:
|
|
| 269 |
btn.click(fin_clear, None, fin, show_progress=False)
|
| 270 |
load_btn.click(load_url, in_url, [inp, mes])
|
| 271 |
|
| 272 |
-
btn.click(aiornot0, [inp], [outp0, n_out0]).then(
|
| 273 |
-
aiornot1, [inp], [outp1, n_out1]).then(
|
| 274 |
-
aiornot2, [inp], [outp2, n_out2]).then(
|
| 275 |
-
tot_prob, None, fin, show_progress=False)
|
| 276 |
-
|
| 277 |
btn.click(image_classifier0, [inp], [n_out0]).then(
|
| 278 |
image_classifier1, [inp], [n_out1]).then(
|
| 279 |
image_classifier2, [inp], [n_out2]).then(
|
|
@@ -282,15 +209,21 @@ with gr.Blocks() as app:
|
|
| 282 |
# Tab for batch processing
|
| 283 |
with gr.Tab("Batch Image Processing"):
|
| 284 |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
|
| 285 |
-
|
| 286 |
-
|
| 287 |
-
|
| 288 |
-
|
| 289 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 290 |
|
| 291 |
batch_btn = gr.Button("Process Batch")
|
| 292 |
|
| 293 |
# Connect batch processing
|
| 294 |
-
batch_btn.click(process_zip, zip_file,
|
|
|
|
| 295 |
|
| 296 |
-
app.launch(show_api=False, max_threads=24)
|
|
|
|
| 91 |
|
| 92 |
return accuracy, roc_score, report, fig, fig_roc
|
| 93 |
|
| 94 |
+
# Gradio function for batch image processing with all models
|
| 95 |
def process_zip(zip_file):
|
| 96 |
extracted_dir = extract_zip(zip_file.name)
|
| 97 |
+
|
| 98 |
+
# Run classification for each model
|
| 99 |
+
results = {}
|
| 100 |
+
for idx, pipe in enumerate([pipe0, pipe1, pipe2]):
|
| 101 |
+
labels, preds, images = classify_images(extracted_dir, pipe)
|
| 102 |
+
accuracy, roc_score, report, cm_fig, roc_fig = evaluate_model(labels, preds)
|
| 103 |
+
|
| 104 |
+
# Store results for each model
|
| 105 |
+
results[f'Model_{idx}_accuracy'] = accuracy
|
| 106 |
+
results[f'Model_{idx}_roc_score'] = roc_score
|
| 107 |
+
results[f'Model_{idx}_report'] = report
|
| 108 |
+
results[f'Model_{idx}_cm_fig'] = cm_fig
|
| 109 |
+
results[f'Model_{idx}_roc_fig'] = roc_fig
|
| 110 |
+
|
| 111 |
shutil.rmtree(extracted_dir) # Clean up extracted files
|
| 112 |
+
|
| 113 |
+
# Return results for all three models
|
| 114 |
+
return (results['Model_0_accuracy'], results['Model_0_roc_score'], results['Model_0_report'],
|
| 115 |
+
results['Model_0_cm_fig'], results['Model_0_roc_fig'],
|
| 116 |
+
results['Model_1_accuracy'], results['Model_1_roc_score'], results['Model_1_report'],
|
| 117 |
+
results['Model_1_cm_fig'], results['Model_1_roc_fig'],
|
| 118 |
+
results['Model_2_accuracy'], results['Model_2_roc_score'], results['Model_2_report'],
|
| 119 |
+
results['Model_2_cm_fig'], results['Model_2_roc_fig'])
|
| 120 |
|
| 121 |
# Single image classification functions
|
| 122 |
def image_classifier0(image):
|
|
|
|
| 146 |
fin_sum.append(results)
|
| 147 |
return results
|
| 148 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
def load_url(url):
|
| 150 |
try:
|
| 151 |
urllib.request.urlretrieve(f'{url}', f"{uid}tmp_im.png")
|
|
|
|
| 173 |
fin_sum.clear()
|
| 174 |
return None
|
| 175 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 176 |
# Set up Gradio app
|
| 177 |
with gr.Blocks() as app:
|
| 178 |
gr.Markdown("""<center><h1>AI Image Detector<br><h4>(Test Demo - accuracy varies by model)</h4></h1></center>""")
|
|
|
|
| 201 |
btn.click(fin_clear, None, fin, show_progress=False)
|
| 202 |
load_btn.click(load_url, in_url, [inp, mes])
|
| 203 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
btn.click(image_classifier0, [inp], [n_out0]).then(
|
| 205 |
image_classifier1, [inp], [n_out1]).then(
|
| 206 |
image_classifier2, [inp], [n_out2]).then(
|
|
|
|
| 209 |
# Tab for batch processing
|
| 210 |
with gr.Tab("Batch Image Processing"):
|
| 211 |
zip_file = gr.File(label="Upload Zip (two folders: real, ai)")
|
| 212 |
+
|
| 213 |
+
# Outputs for all three models
|
| 214 |
+
for i in range(3):
|
| 215 |
+
with gr.Group():
|
| 216 |
+
gr.Markdown(f"### Results for Model {i}")
|
| 217 |
+
output_acc = gr.Label(label=f"Model {i} Accuracy")
|
| 218 |
+
output_roc = gr.Label(label=f"Model {i} ROC Score")
|
| 219 |
+
output_report = gr.Textbox(label=f"Model {i} Classification Report", lines=10)
|
| 220 |
+
output_cm = gr.Plot(label=f"Model {i} Confusion Matrix")
|
| 221 |
+
output_roc_plot = gr.Plot(label=f"Model {i} ROC Curve")
|
| 222 |
|
| 223 |
batch_btn = gr.Button("Process Batch")
|
| 224 |
|
| 225 |
# Connect batch processing
|
| 226 |
+
batch_btn.click(process_zip, zip_file,
|
| 227 |
+
[output_acc, output_roc, output_report, output_cm, output_roc_plot] * 3) # For all 3 models
|
| 228 |
|
| 229 |
+
app.launch(show_api=False, max_threads=24)
|