Spaces:
Runtime error
Runtime error
Li
commited on
Commit
·
ab6ff71
1
Parent(s):
a230c75
update app.py
Browse files
app.py
CHANGED
|
@@ -6,7 +6,7 @@ from PIL import Image
|
|
| 6 |
|
| 7 |
from open_flamingo.train.distributed import init_distributed_device, world_info_from_env
|
| 8 |
import string
|
| 9 |
-
|
| 10 |
|
| 11 |
|
| 12 |
import gradio as gr
|
|
@@ -44,14 +44,13 @@ def generate(
|
|
| 44 |
idx,
|
| 45 |
image,
|
| 46 |
text,
|
| 47 |
-
tsvfile,
|
| 48 |
vis_embed_size=256,
|
| 49 |
rank=0,
|
| 50 |
world_size=1,
|
| 51 |
):
|
| 52 |
if image is None:
|
| 53 |
raise gr.Error("Please upload an image.")
|
| 54 |
-
flamingo.eval()
|
| 55 |
loc_token_ids = []
|
| 56 |
for i in range(1000):
|
| 57 |
loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
|
|
@@ -70,7 +69,12 @@ def generate(
|
|
| 70 |
height = image.height
|
| 71 |
image = image.resize((224, 224))
|
| 72 |
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 73 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 74 |
encodings = tokenizer(
|
| 75 |
prompt,
|
| 76 |
padding="longest",
|
|
@@ -85,13 +89,13 @@ def generate(
|
|
| 85 |
image_nums = [1] * len(input_ids)
|
| 86 |
outputs = get_outputs(
|
| 87 |
model=flamingo,
|
| 88 |
-
batch_images=batch_images
|
| 89 |
-
attention_mask=attention_mask
|
| 90 |
max_generation_length=5,
|
| 91 |
min_generation_length=4,
|
| 92 |
num_beams=1,
|
| 93 |
length_penalty=1.0,
|
| 94 |
-
input_ids=input_ids
|
| 95 |
bad_words_ids=bad_words_ids,
|
| 96 |
image_start_index_list=image_start_index_list,
|
| 97 |
image_nums=image_nums,
|
|
@@ -106,12 +110,23 @@ def generate(
|
|
| 106 |
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
|
| 107 |
# tqdm.write(f"prompt: {prompt}")
|
| 108 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
gen_text = tokenizer.batch_decode(outputs)
|
| 110 |
-
|
| 111 |
-
f"Output:{gen_text}"
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
|
|
|
| 115 |
|
| 116 |
|
| 117 |
with gr.Blocks() as demo:
|
|
|
|
| 6 |
|
| 7 |
from open_flamingo.train.distributed import init_distributed_device, world_info_from_env
|
| 8 |
import string
|
| 9 |
+
import cv2
|
| 10 |
|
| 11 |
|
| 12 |
import gradio as gr
|
|
|
|
| 44 |
idx,
|
| 45 |
image,
|
| 46 |
text,
|
|
|
|
| 47 |
vis_embed_size=256,
|
| 48 |
rank=0,
|
| 49 |
world_size=1,
|
| 50 |
):
|
| 51 |
if image is None:
|
| 52 |
raise gr.Error("Please upload an image.")
|
| 53 |
+
flamingo.eval()
|
| 54 |
loc_token_ids = []
|
| 55 |
for i in range(1000):
|
| 56 |
loc_token_ids.append(int(tokenizer(f"<loc_{i}>", add_special_tokens=False)["input_ids"][-1]))
|
|
|
|
| 69 |
height = image.height
|
| 70 |
image = image.resize((224, 224))
|
| 71 |
batch_images = image_processor(image).unsqueeze(0).unsqueeze(1).unsqueeze(0)
|
| 72 |
+
if idx ==1:
|
| 73 |
+
prompt = [f"<|#image#|>{tokenizer.pad_token*vis_embed_size}<|#endofimage#|><|#obj#|>{text.rstrip('.')}"]
|
| 74 |
+
bad_words_ids = bad_words_ids
|
| 75 |
+
else:
|
| 76 |
+
prompt = [f"<|#image#|>{tokenizer.pad_token * vis_embed_size}<|#endofimage#|>{text.rstrip('.')}"]
|
| 77 |
+
bad_words_ids = None
|
| 78 |
encodings = tokenizer(
|
| 79 |
prompt,
|
| 80 |
padding="longest",
|
|
|
|
| 89 |
image_nums = [1] * len(input_ids)
|
| 90 |
outputs = get_outputs(
|
| 91 |
model=flamingo,
|
| 92 |
+
batch_images=batch_images,
|
| 93 |
+
attention_mask=attention_mask,
|
| 94 |
max_generation_length=5,
|
| 95 |
min_generation_length=4,
|
| 96 |
num_beams=1,
|
| 97 |
length_penalty=1.0,
|
| 98 |
+
input_ids=input_ids,
|
| 99 |
bad_words_ids=bad_words_ids,
|
| 100 |
image_start_index_list=image_start_index_list,
|
| 101 |
image_nums=image_nums,
|
|
|
|
| 110 |
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
|
| 111 |
# tqdm.write(f"prompt: {prompt}")
|
| 112 |
|
| 113 |
+
if len(box) == 4:
|
| 114 |
+
img = cv2.cvtColor(np.array(image_ori), cv2.COLOR_RGB2BGR)
|
| 115 |
+
out = cv2.rectangle(img, (int(box[0] * width / 1000), int(box[1] * height / 1000)),
|
| 116 |
+
(int(box[2] * width / 1000), int(box[3] * height / 1000)), color=(255, 0, 255), thickness=2)
|
| 117 |
+
out = cv2.cvtColor(out, cv2.COLOR_BGR2RGB)
|
| 118 |
+
out_image = Image.fromarray(out)
|
| 119 |
+
# else:
|
| 120 |
+
# tqdm.write(f"output: {tokenizer.batch_decode(outputs)}")
|
| 121 |
+
# tqdm.write(f"prompt: {prompt}")
|
| 122 |
+
|
| 123 |
gen_text = tokenizer.batch_decode(outputs)
|
| 124 |
+
if idx == 1:
|
| 125 |
+
return f"Output:{gen_text}", out_image
|
| 126 |
+
elif idx == 2:
|
| 127 |
+
return (f"Question: {text.strip()} Answer: {gen_text}")
|
| 128 |
+
else:
|
| 129 |
+
return (f"Output:{gen_text}")
|
| 130 |
|
| 131 |
|
| 132 |
with gr.Blocks() as demo:
|