Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,10 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
-
import textwrap
|
| 4 |
import re
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
|
| 6 |
st.title('Hugging Face BERT Summarizer')
|
| 7 |
|
|
@@ -20,14 +23,16 @@ keywords = st.text_input("Enter keywords (comma-separated)")
|
|
| 20 |
scale_percentage = st.sidebar.slider('Scale %', min_value=1, max_value=100, value=50)
|
| 21 |
|
| 22 |
# Add slider for the chunk size
|
| 23 |
-
chunk_size = st.sidebar.slider('Chunk size', min_value=100, max_value=1000, value=500)
|
| 24 |
|
| 25 |
if uploaded_file is not None and keywords:
|
| 26 |
user_input = uploaded_file.read().decode('utf-8')
|
| 27 |
keywords = [keyword.strip() for keyword in keywords.split(",")]
|
| 28 |
|
|
|
|
|
|
|
|
|
|
| 29 |
# Filter sentences based on keywords
|
| 30 |
-
sentences = re.split(r'(?<=[^A-Z].[.?]) +(?=[A-Z])', user_input)
|
| 31 |
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
|
| 32 |
filtered_text = ' '.join(filtered_sentences)
|
| 33 |
|
|
@@ -35,16 +40,17 @@ if uploaded_file is not None and keywords:
|
|
| 35 |
summarizer = pipeline('summarization', model=model)
|
| 36 |
summarized_text = ""
|
| 37 |
|
| 38 |
-
# Split
|
| 39 |
-
|
|
|
|
| 40 |
|
| 41 |
# Summarize each chunk
|
| 42 |
for chunk in chunks:
|
| 43 |
chunk_length = len(chunk.split())
|
| 44 |
-
min_length_percentage = max(scale_percentage - 10, 1)
|
| 45 |
-
max_length_percentage = min(scale_percentage + 10, 100)
|
| 46 |
-
min_length = max(int(chunk_length * min_length_percentage / 100), 1)
|
| 47 |
-
max_length = int(chunk_length * max_length_percentage / 100)
|
| 48 |
summarized = summarizer(chunk, max_length=max_length, min_length=min_length, do_sample=False)
|
| 49 |
summarized_text += summarized[0]['summary_text'] + " "
|
| 50 |
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
|
|
|
| 3 |
import re
|
| 4 |
+
import nltk
|
| 5 |
+
|
| 6 |
+
nltk.download('punkt')
|
| 7 |
+
from nltk.tokenize import sent_tokenize
|
| 8 |
|
| 9 |
st.title('Hugging Face BERT Summarizer')
|
| 10 |
|
|
|
|
| 23 |
scale_percentage = st.sidebar.slider('Scale %', min_value=1, max_value=100, value=50)
|
| 24 |
|
| 25 |
# Add slider for the chunk size
|
| 26 |
+
chunk_size = st.sidebar.slider('Chunk size (words)', min_value=100, max_value=1000, value=500)
|
| 27 |
|
| 28 |
if uploaded_file is not None and keywords:
|
| 29 |
user_input = uploaded_file.read().decode('utf-8')
|
| 30 |
keywords = [keyword.strip() for keyword in keywords.split(",")]
|
| 31 |
|
| 32 |
+
# Split text into sentences
|
| 33 |
+
sentences = sent_tokenize(user_input)
|
| 34 |
+
|
| 35 |
# Filter sentences based on keywords
|
|
|
|
| 36 |
filtered_sentences = [sentence for sentence in sentences if any(keyword.lower() in sentence.lower() for keyword in keywords)]
|
| 37 |
filtered_text = ' '.join(filtered_sentences)
|
| 38 |
|
|
|
|
| 40 |
summarizer = pipeline('summarization', model=model)
|
| 41 |
summarized_text = ""
|
| 42 |
|
| 43 |
+
# Split filtered text into chunks by words
|
| 44 |
+
words = filtered_text.split()
|
| 45 |
+
chunks = [' '.join(words[i:i+chunk_size]) for i in range(0, len(words), chunk_size)]
|
| 46 |
|
| 47 |
# Summarize each chunk
|
| 48 |
for chunk in chunks:
|
| 49 |
chunk_length = len(chunk.split())
|
| 50 |
+
min_length_percentage = max(scale_percentage - 10, 1)
|
| 51 |
+
max_length_percentage = min(scale_percentage + 10, 100)
|
| 52 |
+
min_length = max(int(chunk_length * min_length_percentage / 100), 1)
|
| 53 |
+
max_length = int(chunk_length * max_length_percentage / 100)
|
| 54 |
summarized = summarizer(chunk, max_length=max_length, min_length=min_length, do_sample=False)
|
| 55 |
summarized_text += summarized[0]['summary_text'] + " "
|
| 56 |
|