Delete app.txt
Browse files
app.txt
DELETED
|
@@ -1,242 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
|
| 3 |
-
from matplotlib import gridspec
|
| 4 |
-
import matplotlib.pyplot as plt
|
| 5 |
-
import numpy as np
|
| 6 |
-
from PIL import Image
|
| 7 |
-
import tensorflow as tf
|
| 8 |
-
from transformers import SegformerFeatureExtractor, TFSegformerForSemanticSegmentation
|
| 9 |
-
|
| 10 |
-
feature_extractor = SegformerFeatureExtractor.from_pretrained(
|
| 11 |
-
"nvidia/segformer-b5-finetuned-ade-640-640"
|
| 12 |
-
)
|
| 13 |
-
model = TFSegformerForSemanticSegmentation.from_pretrained(
|
| 14 |
-
"nvidia/segformer-b5-finetuned-ade-640-640"
|
| 15 |
-
)
|
| 16 |
-
|
| 17 |
-
def ade_palette():
|
| 18 |
-
"""ADE20K palette that maps each class to RGB values."""
|
| 19 |
-
return [
|
| 20 |
-
[204, 87, 92],
|
| 21 |
-
[112, 185, 212],
|
| 22 |
-
[45, 189, 106],
|
| 23 |
-
[234, 123, 67],
|
| 24 |
-
[78, 56, 123],
|
| 25 |
-
[210, 32, 89],
|
| 26 |
-
[90, 180, 56],
|
| 27 |
-
[155, 102, 200],
|
| 28 |
-
[33, 147, 176],
|
| 29 |
-
[255, 183, 76],
|
| 30 |
-
[67, 123, 89],
|
| 31 |
-
[190, 60, 45],
|
| 32 |
-
[134, 112, 200],
|
| 33 |
-
[56, 45, 189],
|
| 34 |
-
[200, 56, 123],
|
| 35 |
-
[87, 92, 204],
|
| 36 |
-
[120, 56, 123],
|
| 37 |
-
[45, 78, 123],
|
| 38 |
-
[156, 200, 56],
|
| 39 |
-
[32, 90, 210],
|
| 40 |
-
[56, 123, 67],
|
| 41 |
-
[180, 56, 123],
|
| 42 |
-
[123, 67, 45],
|
| 43 |
-
[45, 134, 200],
|
| 44 |
-
[67, 56, 123],
|
| 45 |
-
[78, 123, 67],
|
| 46 |
-
[32, 210, 90],
|
| 47 |
-
[45, 56, 189],
|
| 48 |
-
[123, 56, 123],
|
| 49 |
-
[56, 156, 200],
|
| 50 |
-
[189, 56, 45],
|
| 51 |
-
[112, 200, 56],
|
| 52 |
-
[56, 123, 45],
|
| 53 |
-
[200, 32, 90],
|
| 54 |
-
[123, 45, 78],
|
| 55 |
-
[200, 156, 56],
|
| 56 |
-
[45, 67, 123],
|
| 57 |
-
[56, 45, 78],
|
| 58 |
-
[45, 56, 123],
|
| 59 |
-
[123, 67, 56],
|
| 60 |
-
[56, 78, 123],
|
| 61 |
-
[210, 90, 32],
|
| 62 |
-
[123, 56, 189],
|
| 63 |
-
[45, 200, 134],
|
| 64 |
-
[67, 123, 56],
|
| 65 |
-
[123, 45, 67],
|
| 66 |
-
[90, 32, 210],
|
| 67 |
-
[200, 45, 78],
|
| 68 |
-
[32, 210, 90],
|
| 69 |
-
[45, 123, 67],
|
| 70 |
-
[165, 42, 87],
|
| 71 |
-
[72, 145, 167],
|
| 72 |
-
[15, 158, 75],
|
| 73 |
-
[209, 89, 40],
|
| 74 |
-
[32, 21, 121],
|
| 75 |
-
[184, 20, 100],
|
| 76 |
-
[56, 135, 15],
|
| 77 |
-
[128, 92, 176],
|
| 78 |
-
[1, 119, 140],
|
| 79 |
-
[220, 151, 43],
|
| 80 |
-
[41, 97, 72],
|
| 81 |
-
[148, 38, 27],
|
| 82 |
-
[107, 86, 176],
|
| 83 |
-
[21, 26, 136],
|
| 84 |
-
[174, 27, 90],
|
| 85 |
-
[91, 96, 204],
|
| 86 |
-
[108, 50, 107],
|
| 87 |
-
[27, 45, 136],
|
| 88 |
-
[168, 200, 52],
|
| 89 |
-
[7, 102, 27],
|
| 90 |
-
[42, 93, 56],
|
| 91 |
-
[140, 52, 112],
|
| 92 |
-
[92, 107, 168],
|
| 93 |
-
[17, 118, 176],
|
| 94 |
-
[59, 50, 174],
|
| 95 |
-
[206, 40, 143],
|
| 96 |
-
[44, 19, 142],
|
| 97 |
-
[23, 168, 75],
|
| 98 |
-
[54, 57, 189],
|
| 99 |
-
[144, 21, 15],
|
| 100 |
-
[15, 176, 35],
|
| 101 |
-
[107, 19, 79],
|
| 102 |
-
[204, 52, 114],
|
| 103 |
-
[48, 173, 83],
|
| 104 |
-
[11, 120, 53],
|
| 105 |
-
[206, 104, 28],
|
| 106 |
-
[20, 31, 153],
|
| 107 |
-
[27, 21, 93],
|
| 108 |
-
[11, 206, 138],
|
| 109 |
-
[112, 30, 83],
|
| 110 |
-
[68, 91, 152],
|
| 111 |
-
[153, 13, 43],
|
| 112 |
-
[25, 114, 54],
|
| 113 |
-
[92, 27, 150],
|
| 114 |
-
[108, 42, 59],
|
| 115 |
-
[194, 77, 5],
|
| 116 |
-
[145, 48, 83],
|
| 117 |
-
[7, 113, 19],
|
| 118 |
-
[25, 92, 113],
|
| 119 |
-
[60, 168, 79],
|
| 120 |
-
[78, 33, 120],
|
| 121 |
-
[89, 176, 205],
|
| 122 |
-
[27, 200, 94],
|
| 123 |
-
[210, 67, 23],
|
| 124 |
-
[123, 89, 189],
|
| 125 |
-
[225, 56, 112],
|
| 126 |
-
[75, 156, 45],
|
| 127 |
-
[172, 104, 200],
|
| 128 |
-
[15, 170, 197],
|
| 129 |
-
[240, 133, 65],
|
| 130 |
-
[89, 156, 112],
|
| 131 |
-
[214, 88, 57],
|
| 132 |
-
[156, 134, 200],
|
| 133 |
-
[78, 57, 189],
|
| 134 |
-
[200, 78, 123],
|
| 135 |
-
[106, 120, 210],
|
| 136 |
-
[145, 56, 112],
|
| 137 |
-
[89, 120, 189],
|
| 138 |
-
[185, 206, 56],
|
| 139 |
-
[47, 99, 28],
|
| 140 |
-
[112, 189, 78],
|
| 141 |
-
[200, 112, 89],
|
| 142 |
-
[89, 145, 112],
|
| 143 |
-
[78, 106, 189],
|
| 144 |
-
[112, 78, 189],
|
| 145 |
-
[156, 112, 78],
|
| 146 |
-
[28, 210, 99],
|
| 147 |
-
[78, 89, 189],
|
| 148 |
-
[189, 78, 57],
|
| 149 |
-
[112, 200, 78],
|
| 150 |
-
[189, 47, 78],
|
| 151 |
-
[205, 112, 57],
|
| 152 |
-
[78, 145, 57],
|
| 153 |
-
[200, 78, 112],
|
| 154 |
-
[99, 89, 145],
|
| 155 |
-
[200, 156, 78],
|
| 156 |
-
[57, 78, 145],
|
| 157 |
-
[78, 57, 99],
|
| 158 |
-
[57, 78, 145],
|
| 159 |
-
[145, 112, 78],
|
| 160 |
-
[78, 89, 145],
|
| 161 |
-
[210, 99, 28],
|
| 162 |
-
[145, 78, 189],
|
| 163 |
-
[57, 200, 136],
|
| 164 |
-
[89, 156, 78],
|
| 165 |
-
[145, 78, 99],
|
| 166 |
-
[99, 28, 210],
|
| 167 |
-
[189, 78, 47],
|
| 168 |
-
[28, 210, 99],
|
| 169 |
-
[78, 145, 57],
|
| 170 |
-
]
|
| 171 |
-
|
| 172 |
-
labels_list = []
|
| 173 |
-
|
| 174 |
-
with open(r'labels.txt', 'r') as fp:
|
| 175 |
-
for line in fp:
|
| 176 |
-
labels_list.append(line[:-1])
|
| 177 |
-
|
| 178 |
-
colormap = np.asarray(ade_palette())
|
| 179 |
-
|
| 180 |
-
def label_to_color_image(label):
|
| 181 |
-
if label.ndim != 2:
|
| 182 |
-
raise ValueError("Expect 2-D input label")
|
| 183 |
-
|
| 184 |
-
if np.max(label) >= len(colormap):
|
| 185 |
-
raise ValueError("label value too large.")
|
| 186 |
-
return colormap[label]
|
| 187 |
-
|
| 188 |
-
def draw_plot(pred_img, seg):
|
| 189 |
-
fig = plt.figure(figsize=(20, 15))
|
| 190 |
-
|
| 191 |
-
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1])
|
| 192 |
-
|
| 193 |
-
plt.subplot(grid_spec[0])
|
| 194 |
-
plt.imshow(pred_img)
|
| 195 |
-
plt.axis('off')
|
| 196 |
-
LABEL_NAMES = np.asarray(labels_list)
|
| 197 |
-
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1)
|
| 198 |
-
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP)
|
| 199 |
-
|
| 200 |
-
unique_labels = np.unique(seg.numpy().astype("uint8"))
|
| 201 |
-
ax = plt.subplot(grid_spec[1])
|
| 202 |
-
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest")
|
| 203 |
-
ax.yaxis.tick_right()
|
| 204 |
-
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels])
|
| 205 |
-
plt.xticks([], [])
|
| 206 |
-
ax.tick_params(width=0.0, labelsize=25)
|
| 207 |
-
return fig
|
| 208 |
-
|
| 209 |
-
def sepia(input_img):
|
| 210 |
-
input_img = Image.fromarray(input_img)
|
| 211 |
-
|
| 212 |
-
inputs = feature_extractor(images=input_img, return_tensors="tf")
|
| 213 |
-
outputs = model(**inputs)
|
| 214 |
-
logits = outputs.logits
|
| 215 |
-
|
| 216 |
-
logits = tf.transpose(logits, [0, 2, 3, 1])
|
| 217 |
-
logits = tf.image.resize(
|
| 218 |
-
logits, input_img.size[::-1]
|
| 219 |
-
) # We reverse the shape of `image` because `image.size` returns width and height.
|
| 220 |
-
seg = tf.math.argmax(logits, axis=-1)[0]
|
| 221 |
-
|
| 222 |
-
color_seg = np.zeros(
|
| 223 |
-
(seg.shape[0], seg.shape[1], 3), dtype=np.uint8
|
| 224 |
-
) # height, width, 3
|
| 225 |
-
for label, color in enumerate(colormap):
|
| 226 |
-
color_seg[seg.numpy() == label, :] = color
|
| 227 |
-
|
| 228 |
-
# Show image + mask
|
| 229 |
-
pred_img = np.array(input_img) * 0.5 + color_seg * 0.5
|
| 230 |
-
pred_img = pred_img.astype(np.uint8)
|
| 231 |
-
|
| 232 |
-
fig = draw_plot(pred_img, seg)
|
| 233 |
-
return fig
|
| 234 |
-
|
| 235 |
-
demo = gr.Interface(fn=sepia,
|
| 236 |
-
inputs=gr.Image(shape=(400, 600)),
|
| 237 |
-
outputs=['plot'],
|
| 238 |
-
examples=["ADE_val_00000001.jpeg", "ADE_val_00001159.jpg", "ADE_val_00001248.jpg", "ADE_val_00001472.jpg"],
|
| 239 |
-
allow_flagging='never')
|
| 240 |
-
|
| 241 |
-
|
| 242 |
-
demo.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|