File size: 22,234 Bytes
a1d6c90 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 |
```python
#!/usr/bin/env python3
"""
AI Forge E-commerce Automation Code Generator
Generates custom automation scripts (data pipelines, bots) with predictive ML optimization
Freelancer-focused premium AI integration for high-demand clients
"""
import os
import json
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, classification_report
from sklearn.preprocessing import LabelEncoder
import joblib
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import ast
import subprocess
import warnings
warnings.filterwarnings('ignore')
class EcommerceDataAnalyzer:
"""Analyzes e-commerce business data to predict optimal automation strategies"""
def __init__(self):
self.model = None
self.label_encoder = LabelEncoder()
self.feature_importance = {}
def load_business_data(self, file_path):
"""Load e-commerce business data"""
try:
df = pd.read_csv(file_path)
print(f"Loaded business data with {len(df)} records")
return df
except Exception as e:
print(f"Error loading data: {e}")
return None
def extract_features(self, df):
"""Extract features for automation strategy prediction"""
features = []
# Business metrics
business_features = ['monthly_revenue', 'inventory_turnover', 'order_volume', 'customer_count']
# Process categorical variables
categorical_cols = ['business_type', 'platform', 'marketing_strategy']
for col in categorical_cols:
if col in df.columns:
dummies = pd.get_dummies(df[col], prefix=col)
features.append(dummies)
# Add numerical features
for feature in business_features:
if feature in df.columns:
features.append(df[[feature]]))
# Time-based features
if 'date' in df.columns:
df['month'] = pd.to_datetime(df['date']).dt.month
features.append(pd.get_dummies(df['month'], prefix='month'))
X = pd.concat(features, axis=1)
return X
def prepare_automation_labels(self, df):
"""Prepare labels for automation strategy classification"""
strategies = []
for _, row in df.iterrows():
strategy = self._determine_optimal_strategy(row)
strategies.append(strategy)
return self.label_encoder.fit_transform(strategies)
def _determine_optimal_strategy(self, business_data):
"""Determine optimal automation strategy based on business metrics"""
revenue = business_data.get('monthly_revenue', 0)
inventory_turnover = business_data.get('inventory_turnover', 0)
order_volume = business_data.get('order_volume', 0)
# Define strategy categories
if revenue > 50000 and inventory_turnover < 4:
return "inventory_optimization"
elif revenue > 100000 and order_volume > 1000:
return "advanced_ai_pipeline"
elif revenue > 25000 and order_volume > 500:
return "marketing_automation"
elif order_volume > 2000:
return "data_processing_bot"
elif revenue > 10000:
return "basic_automation"
else:
return "manual_processes"
def train_strategy_predictor(self, X, y):
"""Train Random Forest model to predict optimal automation strategies"""
X_train, X_test, y_train, y_test = train_test_split(
X, y, test_size=0.2, random_state=42)
self.model = RandomForestClassifier(
n_estimators=100,
max_depth=10,
random_state=42
)
# Train model
self.model.fit(X_train, y_train)
# Evaluate model
y_pred = self.model.predict(X_test)
accuracy = accuracy_score(y_test, y_pred)
# Feature importance
self.feature_importance = dict(zip(X.columns, self.model.feature_importances_))
print(f"Strategy predictor trained - Accuracy: {accuracy:.4f}")
# Cross-validation
cv_scores = cross_val_score(self.model, X, y, cv=5)
print(f"Cross-validation scores: {cv_scores}")
print(f"Mean CV accuracy: {cv_scores.mean():.4f}")
return self.model
def predict_optimal_strategy(self, business_data):
"""Predict optimal automation strategy for new business"""
if self.model is None:
print("Model not trained yet")
return None
X_new = self.extract_features(business_data)
strategy_idx = self.model.predict(X_new)[0]
strategy = self.label_encoder.inverse_transform([strategy_idx])[0]
return strategy
class AutomationCodeGenerator:
"""Generates custom automation code based on predicted strategies"""
def __init__(self):
self.templates = self._load_code_templates()
def _load_code_templates(self):
"""Load code templates for different automation strategies"""
templates = {
"inventory_optimization": {
"description": "AI-powered inventory management and restocking",
"language": "python",
"template": '''#!/usr/bin/env python3
"""
AI-Powered Inventory Optimization System
Generated by AI Forge for {business_name}
"""
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')
class InventoryOptimizer:
"""AI-powered inventory optimization system"""
def __init__(self):
self.model = None
def load_inventory_data(self, file_path):
"""Load inventory and sales data"""
try:
df = pd.read_csv(file_path)
return df
except Exception as e:
print(f"Error loading inventory data: {e}")
return None
def train_demand_predictor(self, df):
"""Train demand prediction model"""
features = ['product_id', 'current_stock', 'lead_time', 'seasonality_factor']
return df[features]
def predict_restocking(self, inventory_data):
"""Predict optimal restocking quantities"""
# Implementation details
pass
def main():
optimizer = InventoryOptimizer()
# Add your implementation here
pass
if __name__ == "__main__":
main()
'''
},
"advanced_ai_pipeline": {
"description": "Multi-stage AI pipeline for e-commerce operations",
"language": "python",
"template": '''#!/usr/bin/env python3
"""
Advanced AI Pipeline for E-commerce Operations
Generated by AI Forge for {business_name}
"""
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
import joblib
class AdvancedAIPipeline:
"""Comprehensive AI pipeline for e-commerce automation"""
def __init__(self):
self.models = {{}}
def process_data_pipeline(self):
"""Multi-stage data processing pipeline"""
pass
def main():
pipeline = AdvancedAIPipeline()
pass
if __name__ == "__main__":
main()
'''
},
"marketing_automation": {
"description": "Automated marketing campaign management",
"language": "python",
"template": '''#!/usr/bin/env python3
"""
Marketing Automation System
Generated by AI Forge for {business_name}
"""
import pandas as pd
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from datetime import datetime, timedelta
import json
class MarketingAutomator:
"""AI-driven marketing campaign automation"""
def __init__(self):
self.campaign_data = {{}}
def automate_campaigns(self):
"""Automated campaign management"""
pass
if __name__ == "__main__":
automator = MarketingAutomator()
# Implementation
pass
'''
},
"data_processing_bot": {
"description": "Intelligent data processing and analysis bot",
"language": "python",
"template": '''#!/usr/bin/env python3
"""
Data Processing Automation Bot
Generated by AI Forge for {business_name}
"""
import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import schedule
import time
class DataProcessingBot:
"""Automated data processing and analysis system"""
def __init__(self):
self.processed_data = {{}}
def run_data_pipeline(self):
"""Complete data processing pipeline"""
pass
def main():
bot = DataProcessingBot()
# Add implementation
pass
if __name__ == "__main__":
main()
'''
}
}
return templates
def generate_custom_code(self, strategy, business_name, custom_params=None):
"""Generate custom automation code based on strategy"""
if strategy not in self.templates:
raise ValueError(f"Unknown strategy: {strategy}")
template = self.templates[strategy]
code = template["template"].format(
business_name=business_name,
custom_params=custom_params or {}
)
return {
"strategy": strategy,
"description": template["description"],
"language": template["language"],
"code": code
}
class CodeValidator:
"""Validates generated code for syntax correctness"""
def __init__(self):
pass
def validate_python_syntax(self, code):
"""Validate Python code syntax using ast module"""
try:
ast.parse(code)
return True
except SyntaxError as e:
return False, str(e)
def test_code_execution(self, code_file_path):
"""Test if generated code can be executed without errors"""
try:
result = subprocess.run(
['python', '-m', 'py_compile', code_file_path],
capture_output=True,
text=True,
timeout=30
)
if result.returncode == 0:
return True, "Code compiled successfully"
else:
return False, result.stderr
def check_dependencies(self, code):
"""Check for required dependencies in the code"""
dependencies = set()
# Simple dependency extraction (enhance for production)
if 'pandas' in code:
dependencies.add('pandas')
if 'numpy' in code:
dependencies.add('numpy')
if 'sklearn' in code:
dependencies.add('scikit-learn')
if 'joblib' in code:
dependencies.add('joblib')
if 'requests' in code:
dependencies.add('requests')
return list(dependencies)
class DeploymentManager:
"""Manages deployment of generated automation systems"""
def __init__(self):
self.deployment_templates = self._load_deployment_templates()
def _load_deployment_templates(self):
"""Load deployment configuration templates"""
templates = {
"docker": {
"template": '''FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "generated_system.py"]
},
"fastapi": {
"template": '''from fastapi import FastAPI
import uvicorn
app = FastAPI()
@app.get("/")
def root():
return {{"message": "AI Automation System Deployed"}}
}
return templates
def generate_deployment_config(self, strategy, system_name):
"""Generate deployment configuration files"""
if strategy not in self.deployment_templates:
return None
return self.deployment_templates[strategy]["template"]
class EcommerceAutomationAPI:
"""FastAPI microservice for the automation code generation system"""
def __init__(self):
self.data_analyzer = EcommerceDataAnalyzer()
self.code_generator = AutomationCodeGenerator()
self.validator = CodeValidator()
self.deployment_manager = DeploymentManager()
def initialize_system(self):
"""Initialize the complete automation system"""
print("Initializing E-commerce Automation Code Generator...")
# Load sample data for training
sample_data = self._generate_sample_business_data()
# Extract features and labels
X = self.data_analyzer.extract_features(sample_data)
y = self.data_analyzer.prepare_automation_labels(sample_data)
# Train strategy predictor
self.data_analyzer.train_strategy_predictor(X, y)
print("System initialized successfully")
def _generate_sample_business_data(self):
"""Generate sample business data for system training"""
sample_data = []
business_types = ['clothing', 'electronics', 'home_goods', 'beauty', 'sports']]
for i in range(100):
sample_data.append({
'business_id': i+1,
'business_type': np.random.choice(business_types),
'monthly_revenue': np.random.randint(5000, 200000),
'inventory_turnover': np.random.uniform(2, 8),
'order_volume': np.random.randint(100, 5000),
'customer_count': np.random.randint(50, 5000),
'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']),
'marketing_strategy': np.random.choice(['social_media', 'email', 'seo', 'ppc']),
'date': pd.Timestamp('2024-01-01') + pd.Timedelta(days=i),
'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']),
'monthly_revenue': np.random.randint(5000, 200000),
'inventory_turnover': np.random.uniform(2, 8),
'order_volume': np.random.randint(100, 5000),
'customer_count': np.random.randint(50, 5000),
'inventory_value': np.random.randint(10000, 500000),
'employee_count': np.random.randint(1, 50)
})
return pd.DataFrame(sample_data)
def process_automation_request(self, business_data):
"""Complete workflow: analyze business data, predict strategy, generate code"
# Predict optimal automation strategy
strategy = self.data_analyzer.predict_optimal_strategy(business_data)
# Generate custom code
code_result = self.code_generator.generate_custom_code(
strategy,
business_data.get('business_name', 'Client Business'),
business_data.get('custom_params', {})
)
# Validate code syntax
is_valid = self.validator.validate_python_syntax(code_result["code"])
if not is_valid:
raise ValueError("Generated code has syntax errors")
# Generate deployment configuration
deployment_config = self.deployment_manager.generate_deployment_config(strategy, business_data.get('business_name')))
return {
"strategy": strategy,
"generated_code": code_result,
"validation": {
"syntax_valid": is_valid,
"dependencies": self.validator.check_dependencies(code_result["code"])
}
# FastAPI Application
app = FastAPI(
title="AI Forge E-commerce Automation Generator",
description="Premium AI-powered code generation for e-commerce automation",
version="1.0.0"
)
# CORS middleware
app.add_middleware(
CORSMiddleware,
allow_origins=["*"],
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"]
)
# Initialize system
automation_system = EcommerceAutomationAPI()
@app.on_event("startup")
async def startup_event():
"""Initialize system on startup"""
automation_system.initialize_system()
class AutomationRequest:
business_name: str
monthly_revenue: float
order_volume: int
inventory_turnover: float
business_type: str
custom_params: dict = {}
class AutomationResponse:
success: bool
message: str
strategy: str
generated_code: dict = None
deployment_config: str = None
@app.get("/")
async def root():
return {"message": "AI Forge E-commerce Automation Code Generator API"}
@app.post("/api/generate-automation", response_model=AutomationResponse)
async def generate_automation(request: AutomationRequest):
"""Generate custom automation code for e-commerce business"""
try:
business_data = {
'business_name': request.business_name,
'monthly_revenue': request.monthly_revenue,
'order_volume': request.order_volume,
'inventory_turnover': request.inventory_turnover,
'business_type': request.business_type,
'custom_params': request.custom_params
}
result = automation_system.process_automation_request(business_data)
return AutomationResponse(
success=True,
message=f"Successfully generated {result['strategy']} automation system")
strategy=result['strategy'],
generated_code=result['generated_code'],
deployment_config=result.get('deployment_config')
)
except Exception as e:
raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}")
@app.get("/api/strategy-recommendation")
async def get_strategy_recommendation(
monthly_revenue: float,
order_volume: int,
inventory_turnover: float
):
"""Get automation strategy recommendation based on business metrics"""
try:
sample_business = pd.DataFrame([{
'monthly_revenue': monthly_revenue,
'order_volume': order_volume,
inventory_turnover: float
):
"""Generate strategy recommendation based on business metrics"""
business_data = pd.DataFrame([{
'monthly_revenue': monthly_revenue,
'order_volume': order_volume,
'inventory_turnover': inventory_turnover,
'business_type': 'electronics', # Example
'platform': 'shopify', # Example
'customer_count': 1000, # Example
'business_type': 'electronics',
'inventory_turnover': inventory_turnover
}])
strategy = automation_system.data_analyzer.predict_optimal_strategy(business_data)
return {"strategy": strategy}
@app.get("/api/health")
async def health_check():
return {"status": "healthy", "service": "ecommerce_automation_generator"}
def generate_sample_business_data():
"""Generate comprehensive sample business data for testing"""
businesses = []
for i in range(50):
businesses.append({
'business_id': i+1,
'business_name': f"Sample Business {i+1}",
'monthly_revenue': monthly_revenue,
'order_volume': order_volume,
'inventory_turnover': np.random.uniform(2, 8),
'monthly_revenue': np.random.randint(10000, 150000),
'inventory_turnover': np.random.uniform(3, 7),
'customer_count': np.random.randint(100, 3000),
'business_type': np.random.choice(['clothing', 'electronics', 'home_goods', 'beauty', 'sports']),
'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']),
'marketing_strategy': np.random.choice(['social_media', 'email', 'seo']),
'inventory_value': np.random.randint(50000, 300000),
'employee_count': np.random.randint(2, 25)
})
df = pd.DataFrame(businesses)
df.to_csv("./data/sample_businesses.csv", index=False)
print("Sample business data generated")
def main():
"""Main execution function"""
print("="*70)
print("AI FORGE E-COMMERCE AUTOMATION CODE GENERATOR")
print("Optimized for 220% YoY demand growth in AI automation")
print("Premium service for freelancers and high-demand clients")
print("="*70)
# Generate sample data
generate_sample_business_data()
# Initialize and test the system
automation_system.initialize_system()
# Sample automation request
sample_request = AutomationRequest(
business_name="TechGadgets Inc.",
monthly_revenue=125000,
order_volume=2870,
inventory_turnover=4.2,
business_type="electronics",
custom_params={
'api_key': 'your_api_key_here',
'webhook_url': 'https://your-webhook.com'
)
# Process sample request
result = automation_system.process_automation_request({
'business_name': sample_request.business_name,
'monthly_revenue': sample_request.monthly_revenue,
'order_volume': sample_request.order_volume,
'inventory_turnover': sample_request.inventory_turnover,
'business_type': sample_request.business_type,
'custom_params': sample_request.custom_params
)
print(f"Generated {result['strategy']} automation system")
print(f"Code validation: {result['validation']['syntax_valid']}")
print(f"Dependencies: {result['validation']['dependencies']}")
print("\nSystem ready for premium client automation projects!")
print("API endpoints available at http://localhost:8000")
# Start the FastAPI server
uvicorn.run(
"ecommerce_automation_generator:app",
host="0.0.0.0",
port=8000,
reload=True
)
if __name__ == "__main__":
main()
``` |