File size: 22,234 Bytes
a1d6c90
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
```python
#!/usr/bin/env python3
"""
AI Forge E-commerce Automation Code Generator
Generates custom automation scripts (data pipelines, bots) with predictive ML optimization
Freelancer-focused premium AI integration for high-demand clients
"""

import os
import json
import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
from sklearn.model_selection import train_test_split, cross_val_score
from sklearn.metrics import accuracy_score, classification_report
from sklearn.preprocessing import LabelEncoder
import joblib
from fastapi import FastAPI, HTTPException
from fastapi.middleware.cors import CORSMiddleware
import uvicorn
import ast
import subprocess
import warnings
warnings.filterwarnings('ignore')

class EcommerceDataAnalyzer:
    """Analyzes e-commerce business data to predict optimal automation strategies"""
    
    def __init__(self):
        self.model = None
        self.label_encoder = LabelEncoder()
        self.feature_importance = {}
        
    def load_business_data(self, file_path):
        """Load e-commerce business data"""
        try:
            df = pd.read_csv(file_path)
            print(f"Loaded business data with {len(df)} records")
            return df
        except Exception as e:
            print(f"Error loading data: {e}")
            return None
    
    def extract_features(self, df):
        """Extract features for automation strategy prediction"""
        features = []
        
        # Business metrics
        business_features = ['monthly_revenue', 'inventory_turnover', 'order_volume', 'customer_count']
        
        # Process categorical variables
        categorical_cols = ['business_type', 'platform', 'marketing_strategy']
        
        for col in categorical_cols:
            if col in df.columns:
                dummies = pd.get_dummies(df[col], prefix=col)
                features.append(dummies)
        
        # Add numerical features
        for feature in business_features:
            if feature in df.columns:
                features.append(df[[feature]]))
        
        # Time-based features
        if 'date' in df.columns:
            df['month'] = pd.to_datetime(df['date']).dt.month
            features.append(pd.get_dummies(df['month'], prefix='month'))
        
        X = pd.concat(features, axis=1)
        return X
    
    def prepare_automation_labels(self, df):
        """Prepare labels for automation strategy classification"""
        strategies = []
        
        for _, row in df.iterrows():
            strategy = self._determine_optimal_strategy(row)
            strategies.append(strategy)
        
        return self.label_encoder.fit_transform(strategies)
    
    def _determine_optimal_strategy(self, business_data):
        """Determine optimal automation strategy based on business metrics"""
        
        revenue = business_data.get('monthly_revenue', 0)
        inventory_turnover = business_data.get('inventory_turnover', 0)
        order_volume = business_data.get('order_volume', 0)
        
        # Define strategy categories
        if revenue > 50000 and inventory_turnover < 4:
            return "inventory_optimization"
        elif revenue > 100000 and order_volume > 1000:
            return "advanced_ai_pipeline"
        elif revenue > 25000 and order_volume > 500:
            return "marketing_automation"
        elif order_volume > 2000:
            return "data_processing_bot"
        elif revenue > 10000:
            return "basic_automation"
        else:
            return "manual_processes"
    
    def train_strategy_predictor(self, X, y):
        """Train Random Forest model to predict optimal automation strategies"""
        
        X_train, X_test, y_train, y_test = train_test_split(
            X, y, test_size=0.2, random_state=42)
        
        self.model = RandomForestClassifier(
            n_estimators=100,
            max_depth=10,
            random_state=42
        )
        
        # Train model
        self.model.fit(X_train, y_train)
        
        # Evaluate model
        y_pred = self.model.predict(X_test)
        accuracy = accuracy_score(y_test, y_pred)
        
        # Feature importance
        self.feature_importance = dict(zip(X.columns, self.model.feature_importances_))
        
        print(f"Strategy predictor trained - Accuracy: {accuracy:.4f}")
        
        # Cross-validation
        cv_scores = cross_val_score(self.model, X, y, cv=5)
        print(f"Cross-validation scores: {cv_scores}")
        print(f"Mean CV accuracy: {cv_scores.mean():.4f}")
        
        return self.model
    
    def predict_optimal_strategy(self, business_data):
        """Predict optimal automation strategy for new business"""
        if self.model is None:
            print("Model not trained yet")
            return None
        
        X_new = self.extract_features(business_data)
        strategy_idx = self.model.predict(X_new)[0]
        strategy = self.label_encoder.inverse_transform([strategy_idx])[0]
        
        return strategy

class AutomationCodeGenerator:
    """Generates custom automation code based on predicted strategies"""
    
    def __init__(self):
        self.templates = self._load_code_templates()
        
    def _load_code_templates(self):
        """Load code templates for different automation strategies"""
        
        templates = {
            "inventory_optimization": {
                "description": "AI-powered inventory management and restocking",
                "language": "python",
                "template": '''#!/usr/bin/env python3
"""
AI-Powered Inventory Optimization System
Generated by AI Forge for {business_name}
"""

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestRegressor
from sklearn.model_selection import train_test_split
import warnings
warnings.filterwarnings('ignore')

class InventoryOptimizer:
    """AI-powered inventory optimization system"""
    
    def __init__(self):
        self.model = None
        
    def load_inventory_data(self, file_path):
        """Load inventory and sales data"""
        try:
            df = pd.read_csv(file_path)
            return df
        except Exception as e:
            print(f"Error loading inventory data: {e}")
            return None
    
    def train_demand_predictor(self, df):
        """Train demand prediction model"""
        features = ['product_id', 'current_stock', 'lead_time', 'seasonality_factor']
        return df[features]
    
    def predict_restocking(self, inventory_data):
        """Predict optimal restocking quantities"""
        # Implementation details
        pass

def main():
    optimizer = InventoryOptimizer()
    # Add your implementation here
    pass

if __name__ == "__main__":
    main()
'''
            },
            "advanced_ai_pipeline": {
                "description": "Multi-stage AI pipeline for e-commerce operations",
                "language": "python",
                "template": '''#!/usr/bin/env python3
"""
Advanced AI Pipeline for E-commerce Operations
Generated by AI Forge for {business_name}
"""

import pandas as pd
import numpy as np
from sklearn.ensemble import RandomForestClassifier
import joblib

class AdvancedAIPipeline:
    """Comprehensive AI pipeline for e-commerce automation"""
    
    def __init__(self):
        self.models = {{}}
    
    def process_data_pipeline(self):
        """Multi-stage data processing pipeline"""
        pass

def main():
    pipeline = AdvancedAIPipeline()
    pass

if __name__ == "__main__":
    main()
'''
            },
            "marketing_automation": {
                "description": "Automated marketing campaign management",
                "language": "python",
                "template": '''#!/usr/bin/env python3
"""
Marketing Automation System
Generated by AI Forge for {business_name}
"""

import pandas as pd
import smtplib
from email.mime.text import MIMEText
from email.mime.multipart import MIMEMultipart
from datetime import datetime, timedelta
import json

class MarketingAutomator:
    """AI-driven marketing campaign automation"""
    
    def __init__(self):
        self.campaign_data = {{}}
    
    def automate_campaigns(self):
        """Automated campaign management"""
        pass

if __name__ == "__main__":
    automator = MarketingAutomator()
    # Implementation
    pass
'''
            },
            "data_processing_bot": {
                "description": "Intelligent data processing and analysis bot",
                "language": "python",
                "template": '''#!/usr/bin/env python3
"""
Data Processing Automation Bot
Generated by AI Forge for {business_name}
"""

import pandas as pd
import numpy as np
from sklearn.preprocessing import StandardScaler
import schedule
import time

class DataProcessingBot:
    """Automated data processing and analysis system"""
    
    def __init__(self):
        self.processed_data = {{}}
    
    def run_data_pipeline(self):
        """Complete data processing pipeline"""
        pass

def main():
    bot = DataProcessingBot()
    # Add implementation
    pass

if __name__ == "__main__":
    main()
'''
            }
        }
        
        return templates
    
    def generate_custom_code(self, strategy, business_name, custom_params=None):
        """Generate custom automation code based on strategy"""
        
        if strategy not in self.templates:
            raise ValueError(f"Unknown strategy: {strategy}")
        
        template = self.templates[strategy]
        code = template["template"].format(
            business_name=business_name,
            custom_params=custom_params or {}
        )
        
        return {
            "strategy": strategy,
            "description": template["description"],
            "language": template["language"],
            "code": code
        }

class CodeValidator:
    """Validates generated code for syntax correctness"""
    
    def __init__(self):
        pass
    
    def validate_python_syntax(self, code):
        """Validate Python code syntax using ast module"""
        try:
            ast.parse(code)
            return True
        except SyntaxError as e:
            return False, str(e)
    
    def test_code_execution(self, code_file_path):
        """Test if generated code can be executed without errors"""
        try:
            result = subprocess.run(
                ['python', '-m', 'py_compile', code_file_path],
                capture_output=True,
                text=True,
                timeout=30
            )
            
            if result.returncode == 0:
                return True, "Code compiled successfully"
            else:
                return False, result.stderr
    
    def check_dependencies(self, code):
        """Check for required dependencies in the code"""
        dependencies = set()
        
        # Simple dependency extraction (enhance for production)
        if 'pandas' in code:
                dependencies.add('pandas')
            if 'numpy' in code:
                dependencies.add('numpy')
            if 'sklearn' in code:
                dependencies.add('scikit-learn')
            if 'joblib' in code:
                dependencies.add('joblib')
            if 'requests' in code:
                dependencies.add('requests')
            
            return list(dependencies)

class DeploymentManager:
    """Manages deployment of generated automation systems"""
    
    def __init__(self):
        self.deployment_templates = self._load_deployment_templates()
    
    def _load_deployment_templates(self):
        """Load deployment configuration templates"""
        
        templates = {
            "docker": {
                "template": '''FROM python:3.9-slim
WORKDIR /app
COPY requirements.txt .
RUN pip install -r requirements.txt
COPY . .
CMD ["python", "generated_system.py"]
        },
        "fastapi": {
            "template": '''from fastapi import FastAPI
import uvicorn

app = FastAPI()

@app.get("/")
def root():
    return {{"message": "AI Automation System Deployed"}}
        }
        
        return templates
    
    def generate_deployment_config(self, strategy, system_name):
        """Generate deployment configuration files"""
        
        if strategy not in self.deployment_templates:
            return None
        
        return self.deployment_templates[strategy]["template"]

class EcommerceAutomationAPI:
    """FastAPI microservice for the automation code generation system"""
    
    def __init__(self):
        self.data_analyzer = EcommerceDataAnalyzer()
        self.code_generator = AutomationCodeGenerator()
        self.validator = CodeValidator()
        self.deployment_manager = DeploymentManager()
        
    def initialize_system(self):
        """Initialize the complete automation system"""
        print("Initializing E-commerce Automation Code Generator...")
        
        # Load sample data for training
        sample_data = self._generate_sample_business_data()
        
        # Extract features and labels
        X = self.data_analyzer.extract_features(sample_data)
        y = self.data_analyzer.prepare_automation_labels(sample_data)
        
        # Train strategy predictor
        self.data_analyzer.train_strategy_predictor(X, y)
        
        print("System initialized successfully")
    
    def _generate_sample_business_data(self):
        """Generate sample business data for system training"""
        
        sample_data = []
        business_types = ['clothing', 'electronics', 'home_goods', 'beauty', 'sports']]
        
        for i in range(100):
            sample_data.append({
                'business_id': i+1,
                'business_type': np.random.choice(business_types),
                'monthly_revenue': np.random.randint(5000, 200000),
            'inventory_turnover': np.random.uniform(2, 8),
            'order_volume': np.random.randint(100, 5000),
            'customer_count': np.random.randint(50, 5000),
            'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']),
            'marketing_strategy': np.random.choice(['social_media', 'email', 'seo', 'ppc']),
            'date': pd.Timestamp('2024-01-01') + pd.Timedelta(days=i),
            'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']),
            'monthly_revenue': np.random.randint(5000, 200000),
            'inventory_turnover': np.random.uniform(2, 8),
            'order_volume': np.random.randint(100, 5000),
            'customer_count': np.random.randint(50, 5000),
            'inventory_value': np.random.randint(10000, 500000),
            'employee_count': np.random.randint(1, 50)
        })
        
        return pd.DataFrame(sample_data)
    
    def process_automation_request(self, business_data):
        """Complete workflow: analyze business data, predict strategy, generate code"
        
        # Predict optimal automation strategy
        strategy = self.data_analyzer.predict_optimal_strategy(business_data)
        
        # Generate custom code
        code_result = self.code_generator.generate_custom_code(
            strategy,
            business_data.get('business_name', 'Client Business'),
            business_data.get('custom_params', {})
        )
        
        # Validate code syntax
        is_valid = self.validator.validate_python_syntax(code_result["code"])
        
        if not is_valid:
            raise ValueError("Generated code has syntax errors")
        
        # Generate deployment configuration
        deployment_config = self.deployment_manager.generate_deployment_config(strategy, business_data.get('business_name')))
        
        return {
            "strategy": strategy,
            "generated_code": code_result,
            "validation": {
                "syntax_valid": is_valid,
                "dependencies": self.validator.check_dependencies(code_result["code"])
        }

# FastAPI Application
app = FastAPI(
    title="AI Forge E-commerce Automation Generator",
    description="Premium AI-powered code generation for e-commerce automation",
    version="1.0.0"
)

# CORS middleware
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"]
)

# Initialize system
automation_system = EcommerceAutomationAPI()

@app.on_event("startup")
async def startup_event():
    """Initialize system on startup"""
    automation_system.initialize_system()

class AutomationRequest:
    business_name: str
    monthly_revenue: float
    order_volume: int
    inventory_turnover: float
    business_type: str
    custom_params: dict = {}

class AutomationResponse:
    success: bool
    message: str
    strategy: str
    generated_code: dict = None
    deployment_config: str = None

@app.get("/")
async def root():
    return {"message": "AI Forge E-commerce Automation Code Generator API"}

@app.post("/api/generate-automation", response_model=AutomationResponse)
async def generate_automation(request: AutomationRequest):
    """Generate custom automation code for e-commerce business"""
    try:
        business_data = {
            'business_name': request.business_name,
            'monthly_revenue': request.monthly_revenue,
            'order_volume': request.order_volume,
            'inventory_turnover': request.inventory_turnover,
            'business_type': request.business_type,
            'custom_params': request.custom_params
        }
        
        result = automation_system.process_automation_request(business_data)
        
        return AutomationResponse(
            success=True,
            message=f"Successfully generated {result['strategy']} automation system")
        strategy=result['strategy'],
        generated_code=result['generated_code'],
        deployment_config=result.get('deployment_config')
        )
    
    except Exception as e:
        raise HTTPException(status_code=500, detail=f"Generation error: {str(e)}")

@app.get("/api/strategy-recommendation")
async def get_strategy_recommendation(
    monthly_revenue: float,
    order_volume: int,
    inventory_turnover: float
):
    """Get automation strategy recommendation based on business metrics"""
    try:
        sample_business = pd.DataFrame([{
            'monthly_revenue': monthly_revenue,
            'order_volume': order_volume,
    inventory_turnover: float
):
    """Generate strategy recommendation based on business metrics"""
    business_data = pd.DataFrame([{
        'monthly_revenue': monthly_revenue,
        'order_volume': order_volume,
            'inventory_turnover': inventory_turnover,
            'business_type': 'electronics',  # Example
            'platform': 'shopify',  # Example
            'customer_count': 1000,  # Example
            'business_type': 'electronics',
            'inventory_turnover': inventory_turnover
    }])
    
    strategy = automation_system.data_analyzer.predict_optimal_strategy(business_data)
    
    return {"strategy": strategy}

@app.get("/api/health")
async def health_check():
    return {"status": "healthy", "service": "ecommerce_automation_generator"}

def generate_sample_business_data():
    """Generate comprehensive sample business data for testing"""
    
    businesses = []
    for i in range(50):
        businesses.append({
            'business_id': i+1,
            'business_name': f"Sample Business {i+1}",
        'monthly_revenue': monthly_revenue,
        'order_volume': order_volume,
        'inventory_turnover': np.random.uniform(2, 8),
            'monthly_revenue': np.random.randint(10000, 150000),
            'inventory_turnover': np.random.uniform(3, 7),
            'customer_count': np.random.randint(100, 3000),
            'business_type': np.random.choice(['clothing', 'electronics', 'home_goods', 'beauty', 'sports']),
            'platform': np.random.choice(['shopify', 'woocommerce', 'magento', 'custom']),
            'marketing_strategy': np.random.choice(['social_media', 'email', 'seo']),
            'inventory_value': np.random.randint(50000, 300000),
            'employee_count': np.random.randint(2, 25)
        })
    
    df = pd.DataFrame(businesses)
    df.to_csv("./data/sample_businesses.csv", index=False)
    print("Sample business data generated")

def main():
    """Main execution function"""
    print("="*70)
    print("AI FORGE E-COMMERCE AUTOMATION CODE GENERATOR")
    print("Optimized for 220% YoY demand growth in AI automation")
    print("Premium service for freelancers and high-demand clients")
    print("="*70)
    
    # Generate sample data
    generate_sample_business_data()
    
    # Initialize and test the system
    automation_system.initialize_system()
    
    # Sample automation request
    sample_request = AutomationRequest(
        business_name="TechGadgets Inc.",
        monthly_revenue=125000,
        order_volume=2870,
        inventory_turnover=4.2,
        business_type="electronics",
        custom_params={
            'api_key': 'your_api_key_here',
            'webhook_url': 'https://your-webhook.com'
    )
    
    # Process sample request
    result = automation_system.process_automation_request({
        'business_name': sample_request.business_name,
        'monthly_revenue': sample_request.monthly_revenue,
        'order_volume': sample_request.order_volume,
        'inventory_turnover': sample_request.inventory_turnover,
        'business_type': sample_request.business_type,
        'custom_params': sample_request.custom_params
    )
    
    print(f"Generated {result['strategy']} automation system")
    print(f"Code validation: {result['validation']['syntax_valid']}")
    print(f"Dependencies: {result['validation']['dependencies']}")
    
    print("\nSystem ready for premium client automation projects!")
    print("API endpoints available at http://localhost:8000")
    
    # Start the FastAPI server
    uvicorn.run(
        "ecommerce_automation_generator:app",
        host="0.0.0.0",
        port=8000,
        reload=True
    )

if __name__ == "__main__":
    main()
```