aungkomyat commited on
Commit
20b1fe0
·
verified ·
1 Parent(s): 70a3f66

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +115 -51
app.py CHANGED
@@ -1,64 +1,128 @@
 
1
  import gradio as gr
2
- from huggingface_hub import InferenceClient
 
 
 
 
 
 
3
 
4
- """
5
- For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
6
- """
7
- client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
 
8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9
 
10
- def respond(
11
- message,
12
- history: list[tuple[str, str]],
13
- system_message,
14
- max_tokens,
15
- temperature,
16
- top_p,
17
- ):
18
- messages = [{"role": "system", "content": system_message}]
 
 
 
 
 
19
 
20
- for val in history:
21
- if val[0]:
22
- messages.append({"role": "user", "content": val[0]})
23
- if val[1]:
24
- messages.append({"role": "assistant", "content": val[1]})
 
 
 
 
 
 
 
 
 
 
 
25
 
26
- messages.append({"role": "user", "content": message})
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
27
 
28
- response = ""
 
29
 
30
- for message in client.chat_completion(
31
- messages,
32
- max_tokens=max_tokens,
33
- stream=True,
34
- temperature=temperature,
35
- top_p=top_p,
36
- ):
37
- token = message.choices[0].delta.content
38
-
39
- response += token
40
- yield response
41
-
42
-
43
- """
44
- For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
45
- """
46
- demo = gr.ChatInterface(
47
- respond,
48
- additional_inputs=[
49
- gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
50
- gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
51
- gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
52
- gr.Slider(
53
- minimum=0.1,
54
- maximum=1.0,
55
- value=0.95,
56
- step=0.05,
57
- label="Top-p (nucleus sampling)",
58
- ),
59
  ],
 
 
 
 
 
 
 
 
 
 
 
 
 
60
  )
61
 
 
 
 
 
 
 
62
 
 
63
  if __name__ == "__main__":
64
- demo.launch()
 
1
+ import os
2
  import gradio as gr
3
+ import numpy as np
4
+ import torch
5
+ import scipy.io.wavfile
6
+ from utils.hparams import create_hparams
7
+ from train import load_model
8
+ from synthesis import generate_speech
9
+ from text import text_to_sequence
10
 
11
+ # Path configurations
12
+ MODEL_DIR = "trained_model"
13
+ MODEL_PATH = os.path.join(MODEL_DIR, "checkpoint_latest.pth.tar")
14
+ CONFIG_PATH = os.path.join(MODEL_DIR, "hparams.yml")
15
+ OUTPUT_PATH = "output.wav"
16
 
17
+ # Download model if it doesn't exist
18
+ def download_model():
19
+ if not os.path.exists(MODEL_DIR):
20
+ os.makedirs(MODEL_DIR)
21
+
22
+ if not os.path.exists(MODEL_PATH):
23
+ print("Downloading model...")
24
+ # Add model download code here
25
+ # For example:
26
+ # !wget -O MODEL_PATH https://path/to/model
27
+ raise Exception("You need to download the model checkpoint file and place it in trained_model/checkpoint_latest.pth.tar")
28
+
29
+ if not os.path.exists(CONFIG_PATH):
30
+ print("Downloading config...")
31
+ # Add config download code here
32
+ # For example:
33
+ # !wget -O CONFIG_PATH https://path/to/config
34
+ raise Exception("You need to download the hparams.yml file and place it in trained_model/hparams.yml")
35
 
36
+ # Initialize model
37
+ def init_model():
38
+ try:
39
+ download_model()
40
+
41
+ hparams = create_hparams(CONFIG_PATH)
42
+ model = load_model(hparams)
43
+ model.load_state_dict(torch.load(MODEL_PATH, map_location=torch.device('cpu'))['state_dict'])
44
+ model.eval()
45
+
46
+ return model, hparams
47
+ except Exception as e:
48
+ print(f"Error initializing model: {str(e)}")
49
+ return None, None
50
 
51
+ # Generate speech
52
+ def synthesize(text, model, hparams):
53
+ try:
54
+ sequence = np.array(text_to_sequence(text, ['burmese_cleaners']))[None, :]
55
+ sequence = torch.autograd.Variable(torch.from_numpy(sequence)).cpu().long()
56
+
57
+ mel_outputs, mel_outputs_postnet, _, alignments = model.inference(sequence)
58
+
59
+ with torch.no_grad():
60
+ waveform = generate_speech(mel_outputs_postnet, hparams)
61
+
62
+ scipy.io.wavfile.write(OUTPUT_PATH, hparams.sampling_rate, waveform)
63
+
64
+ return OUTPUT_PATH, None
65
+ except Exception as e:
66
+ return None, str(e)
67
 
68
+ # Gradio interface
69
+ def tts_interface(text):
70
+ if not text.strip():
71
+ return None, "Please enter some text."
72
+
73
+ global MODEL, HPARAMS
74
+ if MODEL is None or HPARAMS is None:
75
+ MODEL, HPARAMS = init_model()
76
+
77
+ if MODEL is None:
78
+ return None, "Model could not be initialized. Please check logs."
79
+
80
+ audio_path, error = synthesize(text, MODEL, HPARAMS)
81
+
82
+ if error:
83
+ return None, f"Error generating speech: {error}"
84
+
85
+ return audio_path, "Speech generated successfully!"
86
 
87
+ # Initialize global model variables
88
+ MODEL, HPARAMS = None, None
89
 
90
+ # Create Gradio interface
91
+ demo = gr.Interface(
92
+ fn=tts_interface,
93
+ inputs=[
94
+ gr.Textbox(
95
+ lines=3,
96
+ placeholder="Enter Burmese text here...",
97
+ label="Text"
98
+ )
99
+ ],
100
+ outputs=[
101
+ gr.Audio(label="Generated Speech"),
102
+ gr.Textbox(label="Status")
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
103
  ],
104
+ title="Myanmar (Burmese) Text-to-Speech",
105
+ description="""
106
+ This is a demo of the Myanmar Text-to-Speech system developed by hpbyte.
107
+ Enter Burmese text in the box below and click 'Submit' to generate speech.
108
+
109
+ GitHub Repository: https://github.com/hpbyte/myanmar-tts
110
+ """,
111
+ allow_flagging="never",
112
+ examples=[
113
+ ["မင်္ဂလာပါ"],
114
+ ["မြန်မာစကားပြောစနစ်ကို ကြိုဆိုပါတယ်"],
115
+ ["ဒီစနစ်ဟာ မြန်မာစာကို အသံအဖြစ် ပြောင်းပေးနိုင်ပါတယ်"],
116
+ ]
117
  )
118
 
119
+ # Initialize model at startup
120
+ try:
121
+ MODEL, HPARAMS = init_model()
122
+ print("Model initialized successfully!")
123
+ except Exception as e:
124
+ print(f"Error initializing model: {str(e)}")
125
 
126
+ # Launch the app
127
  if __name__ == "__main__":
128
+ demo.launch()