Update app.py
Browse files
app.py
CHANGED
|
@@ -1,52 +1,70 @@
|
|
| 1 |
-
#
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer
|
| 6 |
-
from optimum.onnxruntime import ORTModelForSeq2SeqLM
|
| 7 |
-
from optimum.
|
|
|
|
| 8 |
|
| 9 |
-
# Load ONNX
|
| 10 |
model_name = "Rahmat82/t5-small-finetuned-summarization-xsum"
|
| 11 |
-
model = ORTModelForSeq2SeqLM.from_pretrained(model_name)
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
-
#
|
| 15 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
summarizer = pipeline(
|
| 17 |
task="summarization",
|
| 18 |
model=model,
|
| 19 |
tokenizer=tokenizer,
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
|
| 24 |
-
# Speed-optimized summarization function
|
| 25 |
def summarize_text(text):
|
| 26 |
text = text.strip()
|
| 27 |
if not text:
|
| 28 |
return "Please enter some text."
|
| 29 |
-
|
| 30 |
-
# Encode with truncation (max_length=1024)
|
| 31 |
inputs = tokenizer.encode(text, max_length=1024, truncation=True, return_tensors="pt")
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
# Generate summary with tighter bounds
|
| 35 |
summary = summarizer(
|
| 36 |
-
|
| 37 |
-
min_length=
|
| 38 |
max_length=120,
|
| 39 |
do_sample=False
|
| 40 |
)
|
| 41 |
return summary[0]["summary_text"]
|
| 42 |
|
| 43 |
-
# Gradio
|
| 44 |
app = gr.Interface(
|
| 45 |
fn=summarize_text,
|
| 46 |
-
inputs=gr.Textbox(lines=12,
|
| 47 |
outputs=gr.Textbox(label="Summary"),
|
| 48 |
-
title="
|
| 49 |
-
description="
|
| 50 |
)
|
| 51 |
|
| 52 |
if __name__ == "__main__":
|
|
|
|
| 1 |
+
# pip install gradio transformers onnxruntime optimum torch
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import torch
|
| 5 |
from transformers import AutoTokenizer
|
| 6 |
+
from optimum.onnxruntime import ORTModelForSeq2SeqLM, ORTOptimizer, ORTQuantizer
|
| 7 |
+
from optimum.onnxruntime.configuration import AutoOptimizationConfig
|
| 8 |
+
import onnxruntime as ort
|
| 9 |
|
| 10 |
+
# Step 1: Load & optimize the ONNX model
|
| 11 |
model_name = "Rahmat82/t5-small-finetuned-summarization-xsum"
|
| 12 |
+
model = ORTModelForSeq2SeqLM.from_pretrained(model_name, export=True)
|
| 13 |
+
|
| 14 |
+
optimizer = ORTOptimizer.from_pretrained(model)
|
| 15 |
+
opt_config = AutoOptimizationConfig.O2() # graph fusions and transformer-specific optimizations
|
| 16 |
+
optimizer.optimize(save_dir="optimized_model", optimization_config=opt_config)
|
| 17 |
+
optimized_model = ORTModelForSeq2SeqLM.from_pretrained("optimized_model")
|
| 18 |
+
|
| 19 |
+
# Step 2: Apply dynamic INT8 quantization for CPU
|
| 20 |
+
quantizer = ORTQuantizer.from_pretrained(optimized_model)
|
| 21 |
+
opt_q = quantizer.quantize(
|
| 22 |
+
save_dir="quantized_model",
|
| 23 |
+
quantization_config=AutoOptimizationConfig.O2().quantization_config, # dynamic quant
|
| 24 |
+
)
|
| 25 |
+
model = ORTModelForSeq2SeqLM.from_pretrained("quantized_model")
|
| 26 |
|
| 27 |
+
# Step 3: Set up ONNXRuntime Session options for CPU multi-threading
|
| 28 |
+
sess_options = ort.SessionOptions()
|
| 29 |
+
sess_options.intra_op_num_threads = min(4, torch.get_num_threads()) # 4 threads for inference
|
| 30 |
+
sess_options.inter_op_num_threads = 1
|
| 31 |
+
sess_options.graph_optimization_level = ort.GraphOptimizationLevel.ORT_ENABLE_ALL
|
| 32 |
+
|
| 33 |
+
# Rebuild pipeline with optimized quantized model on CPU
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, use_fast=True)
|
| 35 |
+
summarizer = gradio_pipeline = None
|
| 36 |
+
from optimum.pipelines import pipeline
|
| 37 |
summarizer = pipeline(
|
| 38 |
task="summarization",
|
| 39 |
model=model,
|
| 40 |
tokenizer=tokenizer,
|
| 41 |
+
framework="pt",
|
| 42 |
+
ort_session_options=sess_options,
|
| 43 |
+
device=-1,
|
| 44 |
+
batch_size=8,
|
| 45 |
)
|
| 46 |
|
|
|
|
| 47 |
def summarize_text(text):
|
| 48 |
text = text.strip()
|
| 49 |
if not text:
|
| 50 |
return "Please enter some text."
|
|
|
|
|
|
|
| 51 |
inputs = tokenizer.encode(text, max_length=1024, truncation=True, return_tensors="pt")
|
| 52 |
+
decoded = tokenizer.decode(inputs[0], skip_special_tokens=True)
|
|
|
|
|
|
|
| 53 |
summary = summarizer(
|
| 54 |
+
decoded,
|
| 55 |
+
min_length=60,
|
| 56 |
max_length=120,
|
| 57 |
do_sample=False
|
| 58 |
)
|
| 59 |
return summary[0]["summary_text"]
|
| 60 |
|
| 61 |
+
# Gradio UI
|
| 62 |
app = gr.Interface(
|
| 63 |
fn=summarize_text,
|
| 64 |
+
inputs=gr.Textbox(lines=12, label="Input Text"),
|
| 65 |
outputs=gr.Textbox(label="Summary"),
|
| 66 |
+
title="⚙️ CPU-Optimized ONNX T5 Summarizer",
|
| 67 |
+
description="Uses graph optimizations, INT8 quantization, and threading tweaks for fast CPU performance."
|
| 68 |
)
|
| 69 |
|
| 70 |
if __name__ == "__main__":
|