--- title: SAP Finance Dashboard with RPT-1-OSS emoji: πŸ“Š colorFrom: purple colorTo: blue sdk: docker app_port: 7860 app_file: app_gradio.py pinned: false license: apache-2.0 --- # πŸ“Š SAP Finance Dashboard with RPT-1-OSS Model > **Production-ready AI-powered financial analysis dashboard** with SAP data integration, ML predictions, and interactive visualizations. **πŸ”— Live Demo**: https://huggingface.co/spaces/amitgpt/sap-finance-dashboard-RPT-1-OSS --- ## πŸ“‹ Table of Contents - [Overview](#overview) - [Architecture](#architecture) - [Key Features](#key-features) - [What You'll Achieve](#what-youll-achieve) - [Prerequisites](#prerequisites) - [Quick Start](#quick-start) - [Local Development](#local-development) - [Deployment](#deployment) - [Project Structure](#project-structure) - [Troubleshooting](#troubleshooting) - [License](#license) --- ## 🎯 Overview The **SAP Finance Dashboard** is an enterprise-grade web application that brings AI-powered financial intelligence to SAP systems. It combines: - **Real-time SAP data** through OData connectors - **Advanced ML predictions** using the SAP-RPT-1-OSS model (Retrieval-Pretrained Transformer) - **Interactive analytics** with Plotly visualizations - **No-code ML training** via the Playground tab - **Multi-user support** with secure authentication **Perfect for**: - SAP finance teams needing predictive insights - Data analysts building custom financial models - Organizations requiring automated SAP reporting - Learning AI/ML in enterprise contexts --- ## πŸ—οΈ Architecture β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Gradio Web Interface β”‚ β”‚ (Dashboard β€’ Data Explorer β€’ Predictions β€’ Playground) β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”΄β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”¬β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ β”‚ β”‚ β”‚ β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β” β”Œβ”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β” β”Œβ”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”Œβ”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ SAP β”‚ β”‚ SAP-RPT-1- β”‚ β”‚ Plotly β”‚ β”‚ Hugging β”‚ β”‚ OData β”‚ β”‚ OSS Model β”‚ β”‚ Visualizer β”‚ β”‚ Face Hub β”‚ β”‚Connectorβ”‚ β”‚ (Classifier/ β”‚ β”‚ (Charts) β”‚ β”‚ (Models) β”‚ β”‚ β”‚ β”‚ Regressor) β”‚ β”‚ β”‚ β”‚ β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ β”‚ β”‚ β”Œβ”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β–Όβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β” β”‚ Python + Pandas + NumPy + PyTorch β”‚ β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜ --- ## ✨ Key Features ### 1. **Dashboard Tab** πŸ“ˆ - Key financial metrics (Revenue, Expenses, Net Income) - Revenue vs. Expense breakdown - Balance sheet analysis - Real-time metric cards with trend indicators - Fully interactive Plotly charts ### 2. **Data Explorer Tab** πŸ” - Browse synthetic SAP datasets: - **GL Accounts**: Chart of Accounts with balances - **Financial Statements**: Multi-period P&L and Balance Sheet - **Sales Orders**: Order details with line items - Filter, search, and export capabilities - Data validation and profiling ### 3. **Upload Tab** πŸ“€ - Upload custom CSV datasets - Automatic data validation - Preview before processing - Support for various SAP data formats ### 4. **Predictions Tab** πŸ€– - AI-powered financial forecasting using SAP-RPT-1-OSS - Classification tasks (e.g., account categorization) - Regression tasks (e.g., amount prediction) - Confidence scores and explainability - Batch prediction support ### 5. **Playground Tab** πŸ› οΈ - **No-code ML training** interface - Upload training datasets - Configure model parameters: - Context size (2048 for CPU, 8192 for GPU) - Bagging factor (1-8) - Model type (Classifier or Regressor) - Train custom models - Download predictions and model outputs - Performance metrics display ### 6. **OData Connector Tab** πŸ”Œ - Direct connection to SAP systems - Real-time data retrieval - Secure credential handling - Support for OData v2 and v4 - Query builder interface --- ## πŸŽ“ What You'll Achieve After forking and deploying this repository, you'll have: ### βœ… **Enterprise Web Application** - Production-ready Gradio interface - Docker containerization for any cloud platform - Multi-user authentication support - Responsive design for desktop/mobile ### βœ… **AI Integration** - Hands-on experience with the SAP-RPT-1-OSS model - Understanding of Transformer-based financial predictions - Custom model training workflows - Real-time inference optimization ### βœ… **SAP Integration** - OData connector patterns for SAP systems - Secure credential management - Real-time data pipeline examples - Chart of Accounts and transaction handling ### βœ… **Cloud Deployment Skills** - Docker multi-stage builds for ML apps - HuggingFace Spaces deployment - Azure Container Apps integration (optional) - Environment management and secrets handling ### βœ… **Data Science Pipeline** - Data preprocessing and validation - Feature engineering examples - Model training and evaluation - Prediction batch processing --- ## πŸ“¦ Prerequisites ### Local Development - **Python 3.11+** (tested on 3.11) - **Git** (for version control) - **pip** (Python package manager) - **Virtual environment** (recommended: venv or conda) ### For Cloud Deployment - **Docker** (for containerization) - **Hugging Face account** (free, for SAP-RPT-1-OSS access) - **HF authentication token** (for gated models) ### For SAP Integration - **SAP OData endpoint** URL - **SAP credentials** (username/password or OAuth token) - **Network access** to SAP system ### For GPU Support (Optional) - **NVIDIA GPU** (CUDA 11.8+) - **8GB+ VRAM** (recommended for model training) --- ## πŸš€ Quick Start ### Option 1: Run on HuggingFace Spaces (Easiest, 5 minutes) 1. **Fork this repo to HF Spaces** ```bash # Visit: https://huggingface.co/spaces/amitgpt/sap-finance-dashboard-RPT-1-OSS # Click "Files" β†’ "Clone repository" Accept SAP-RPT-1-OSS Model Access Go to: https://huggingface.co/SAP/sap-rpt-1-oss Click "Agree" button Create HF Token https://huggingface.co/settings/tokens Click "New token" β†’ Name it β†’ Select "Read" β†’ Create Add Token to Your Space Go to your Space settings β†’ "Repository secrets" Add: HF_TOKEN = [your token from step 3] Wait 2-3 minutes for rebuild Done! Your Space will rebuild and start automatically πŸ‘‰ See QUICK_START.md for detailed screenshots and troubleshooting Option 2: Local Development (Recommended for customization) Step 1: Clone Repository git clone https://github.com/yourusername/SAP-RPT-1-OSS-App.git cd SAP-RPT-1-OSS-App Step 2: Create Virtual Environment # On Windows python -m venv venv venv\Scripts\activate # On macOS/Linux python3 -m venv venv source venv/bin/activate Step 3: Install Dependencies pip install --upgrade pip pip install -r requirements.txt pip install gradio==4.44.1 pip install huggingface-hub==0.24.7 pip install torch==2.0.0 transformers==4.30.0 pip install git+https://github.com/SAP-samples/sap-rpt-1-oss Step 4: Create Environment File cp .env.example .env # Edit .env and add: # - HUGGINGFACE_TOKEN=hf_xxxxx # - SAP_USERNAME=your_sap_user (optional) # - SAP_PASSWORD=your_sap_pwd (optional) # - SAP_SERVER=sap_system_url (optional) Step 5: Run Application python app_gradio.py The app will start at: http://localhost:7860 🐳 Docker Deployment Build Docker Image docker build -t sap-finance-dashboard:latest . πŸ“Š Usage Examples Example 1: View Financial Dashboard Open: http://localhost:7860 Click Dashboard tab See metrics and charts instantly Example 2: Make AI Predictions Go to Predictions tab Upload a CSV with financial data Configure model settings Click "Predict" Download results Example 3: Train Custom Model Go to Playground tab Upload training dataset Set model parameters Click "Train Model" Download predictions and metrics Example 4: Connect to SAP System Go to OData tab Enter SAP credentials and OData endpoint Build query Execute and view results 🀝 Contributing We welcome contributions! Please: Fork the repository Create a feature branch (git checkout -b feature/amazing-feature) Commit changes (git commit -m 'Add amazing feature') Push to branch (git push origin feature/amazing-feature) Open Pull Request πŸ“„ License This project is licensed under the Apache 2.0 License - see LICENSE file for details. Attribution: Uses the SAP-RPT-1-OSS model (also Apache 2.0). πŸ™‹ Support Questions? Open an issue on GitHub Deployment help? See QUICK_START.md Authentication issues? See HF_AUTHENTICATION_SETUP.md Status updates? See DEPLOYMENT_STATUS.md πŸ“ˆ Roadmap Real-time SAP system synchronization Multi-language support Advanced explainability (SHAP, LIME) Time-series forecasting models Automated report generation (PDF/Excel) Mobile app version Integration with SAP Analytics Cloud Made with ❀️ for SAP developers and data scientists to test SAP Opensource RPT-1 Developed by Amit Lal, Microsoft aka.ms/amitlal Last Updated: December 6, 2025