File size: 9,599 Bytes
a75037d 1ae333a a75037d 7a90b4b a75037d 7a90b4b fc8c40e 7a90b4b fc8c40e 7a90b4b fc8c40e 7a90b4b fc8c40e 7a90b4b fc8c40e 7a90b4b fc8c40e 7a90b4b fc8c40e 7a90b4b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 |
---
title: SAP Finance Dashboard with RPT-1-OSS
emoji: π
colorFrom: purple
colorTo: blue
sdk: docker
app_port: 7860
app_file: app_gradio.py
pinned: false
license: apache-2.0
---
# π SAP Finance Dashboard with RPT-1-OSS Model
> **Production-ready AI-powered financial analysis dashboard** with SAP data integration, ML predictions, and interactive visualizations.
**π Live Demo**: https://huggingface.co/spaces/amitgpt/sap-finance-dashboard-RPT-1-OSS
---
## π Table of Contents
- [Overview](#overview)
- [Architecture](#architecture)
- [Key Features](#key-features)
- [What You'll Achieve](#what-youll-achieve)
- [Prerequisites](#prerequisites)
- [Quick Start](#quick-start)
- [Local Development](#local-development)
- [Deployment](#deployment)
- [Project Structure](#project-structure)
- [Troubleshooting](#troubleshooting)
- [License](#license)
---
## π― Overview
The **SAP Finance Dashboard** is an enterprise-grade web application that brings AI-powered financial intelligence to SAP systems. It combines:
- **Real-time SAP data** through OData connectors
- **Advanced ML predictions** using the SAP-RPT-1-OSS model (Retrieval-Pretrained Transformer)
- **Interactive analytics** with Plotly visualizations
- **No-code ML training** via the Playground tab
- **Multi-user support** with secure authentication
**Perfect for**:
- SAP finance teams needing predictive insights
- Data analysts building custom financial models
- Organizations requiring automated SAP reporting
- Learning AI/ML in enterprise contexts
---
## ποΈ Architecture
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β Gradio Web Interface β
β (Dashboard β’ Data Explorer β’ Predictions β’ Playground) β
ββββββββββββββββββ¬βββββββββββββββββββββββββββββββββββββββββ
β
ββββββββββ΄βββββββββ¬βββββββββββββ¬ββββββββββββββββββ
β β β β
ββββββΌβββββ ββββββββΌβββββββ βββΌβββββββββββββ ββββΌβββββββββββ
β SAP β β SAP-RPT-1- β β Plotly β β Hugging β
β OData β β OSS Model β β Visualizer β β Face Hub β
βConnectorβ β (Classifier/ β β (Charts) β β (Models) β
β β β Regressor) β β β β β
βββββββββββ ββββββββββββββββ βββββββββββββββ βββββββββββββββ
β β
ββββββΌββββββββββββββββββΌββββββββββββββββββ
β Python + Pandas + NumPy + PyTorch β
ββββββββββββββββββββββββββββββββββββββββββ
---
## β¨ Key Features
### 1. **Dashboard Tab** π
- Key financial metrics (Revenue, Expenses, Net Income)
- Revenue vs. Expense breakdown
- Balance sheet analysis
- Real-time metric cards with trend indicators
- Fully interactive Plotly charts
### 2. **Data Explorer Tab** π
- Browse synthetic SAP datasets:
- **GL Accounts**: Chart of Accounts with balances
- **Financial Statements**: Multi-period P&L and Balance Sheet
- **Sales Orders**: Order details with line items
- Filter, search, and export capabilities
- Data validation and profiling
### 3. **Upload Tab** π€
- Upload custom CSV datasets
- Automatic data validation
- Preview before processing
- Support for various SAP data formats
### 4. **Predictions Tab** π€
- AI-powered financial forecasting using SAP-RPT-1-OSS
- Classification tasks (e.g., account categorization)
- Regression tasks (e.g., amount prediction)
- Confidence scores and explainability
- Batch prediction support
### 5. **Playground Tab** π οΈ
- **No-code ML training** interface
- Upload training datasets
- Configure model parameters:
- Context size (2048 for CPU, 8192 for GPU)
- Bagging factor (1-8)
- Model type (Classifier or Regressor)
- Train custom models
- Download predictions and model outputs
- Performance metrics display
### 6. **OData Connector Tab** π
- Direct connection to SAP systems
- Real-time data retrieval
- Secure credential handling
- Support for OData v2 and v4
- Query builder interface
---
## π What You'll Achieve
After forking and deploying this repository, you'll have:
### β
**Enterprise Web Application**
- Production-ready Gradio interface
- Docker containerization for any cloud platform
- Multi-user authentication support
- Responsive design for desktop/mobile
### β
**AI Integration**
- Hands-on experience with the SAP-RPT-1-OSS model
- Understanding of Transformer-based financial predictions
- Custom model training workflows
- Real-time inference optimization
### β
**SAP Integration**
- OData connector patterns for SAP systems
- Secure credential management
- Real-time data pipeline examples
- Chart of Accounts and transaction handling
### β
**Cloud Deployment Skills**
- Docker multi-stage builds for ML apps
- HuggingFace Spaces deployment
- Azure Container Apps integration (optional)
- Environment management and secrets handling
### β
**Data Science Pipeline**
- Data preprocessing and validation
- Feature engineering examples
- Model training and evaluation
- Prediction batch processing
---
## π¦ Prerequisites
### Local Development
- **Python 3.11+** (tested on 3.11)
- **Git** (for version control)
- **pip** (Python package manager)
- **Virtual environment** (recommended: venv or conda)
### For Cloud Deployment
- **Docker** (for containerization)
- **Hugging Face account** (free, for SAP-RPT-1-OSS access)
- **HF authentication token** (for gated models)
### For SAP Integration
- **SAP OData endpoint** URL
- **SAP credentials** (username/password or OAuth token)
- **Network access** to SAP system
### For GPU Support (Optional)
- **NVIDIA GPU** (CUDA 11.8+)
- **8GB+ VRAM** (recommended for model training)
---
## π Quick Start
### Option 1: Run on HuggingFace Spaces (Easiest, 5 minutes)
1. **Fork this repo to HF Spaces**
```bash
# Visit: https://huggingface.co/spaces/amitgpt/sap-finance-dashboard-RPT-1-OSS
# Click "Files" β "Clone repository"
Accept SAP-RPT-1-OSS Model Access
Go to: https://huggingface.co/SAP/sap-rpt-1-oss
Click "Agree" button
Create HF Token
https://huggingface.co/settings/tokens
Click "New token" β Name it β Select "Read" β Create
Add Token to Your Space
Go to your Space settings β "Repository secrets"
Add: HF_TOKEN = [your token from step 3]
Wait 2-3 minutes for rebuild
Done! Your Space will rebuild and start automatically
π See QUICK_START.md for detailed screenshots and troubleshooting
Option 2: Local Development (Recommended for customization)
Step 1: Clone Repository
git clone https://github.com/yourusername/SAP-RPT-1-OSS-App.git
cd SAP-RPT-1-OSS-App
Step 2: Create Virtual Environment
# On Windows
python -m venv venv
venv\Scripts\activate
# On macOS/Linux
python3 -m venv venv
source venv/bin/activate
Step 3: Install Dependencies
pip install --upgrade pip
pip install -r requirements.txt
pip install gradio==4.44.1
pip install huggingface-hub==0.24.7
pip install torch==2.0.0 transformers==4.30.0
pip install git+https://github.com/SAP-samples/sap-rpt-1-oss
Step 4: Create Environment File
cp .env.example .env
# Edit .env and add:
# - HUGGINGFACE_TOKEN=hf_xxxxx
# - SAP_USERNAME=your_sap_user (optional)
# - SAP_PASSWORD=your_sap_pwd (optional)
# - SAP_SERVER=sap_system_url (optional)
Step 5: Run Application
python app_gradio.py
The app will start at: http://localhost:7860
π³ Docker Deployment
Build Docker Image
docker build -t sap-finance-dashboard:latest .
π Usage Examples
Example 1: View Financial Dashboard
Open: http://localhost:7860
Click Dashboard tab
See metrics and charts instantly
Example 2: Make AI Predictions
Go to Predictions tab
Upload a CSV with financial data
Configure model settings
Click "Predict"
Download results
Example 3: Train Custom Model
Go to Playground tab
Upload training dataset
Set model parameters
Click "Train Model"
Download predictions and metrics
Example 4: Connect to SAP System
Go to OData tab
Enter SAP credentials and OData endpoint
Build query
Execute and view results
π€ Contributing
We welcome contributions! Please:
Fork the repository
Create a feature branch (git checkout -b feature/amazing-feature)
Commit changes (git commit -m 'Add amazing feature')
Push to branch (git push origin feature/amazing-feature)
Open Pull Request
π License
This project is licensed under the Apache 2.0 License - see LICENSE file for details.
Attribution: Uses the SAP-RPT-1-OSS model (also Apache 2.0).
π Support
Questions? Open an issue on GitHub
Deployment help? See QUICK_START.md
Authentication issues? See HF_AUTHENTICATION_SETUP.md
Status updates? See DEPLOYMENT_STATUS.md
π Roadmap
Real-time SAP system synchronization
Multi-language support
Advanced explainability (SHAP, LIME)
Time-series forecasting models
Automated report generation (PDF/Excel)
Mobile app version
Integration with SAP Analytics Cloud
Made with β€οΈ for SAP developers and data scientists to test SAP Opensource RPT-1
Developed by Amit Lal, Microsoft
aka.ms/amitlal
Last Updated: December 6, 2025 |