import plotly.graph_objects as go import numpy as np import pandas as pd import logging from typing import Optional, Any, Dict, List # Added List from zoneinfo import ZoneInfo # Assuming this might be used by SuiteConfig/EvalResult or _get_dataframe import json import os logger = logging.getLogger(__name__) INFORMAL_TO_FORMAL_NAME_MAP = { # Short Names "lit": "Literature Understanding", "data": "Data Analysis", "code": "Code Execution", "discovery": "Discovery", # Long Raw Names "arxivdigestables_validation": "Arxivdigestables Validation", "sqa_dev": "Sqa Dev", "litqa2_validation": "Litqa2 Validation", "paper_finder_validation": "Paper Finder Validation", "discoverybench_validation": "Discoverybench Validation", "core_bench_validation": "Core Bench Validation", "ds1000_validation": "DS1000 Validation", "e2e_discovery_validation": "E2E Discovery Validation", "super_validation": "Super Validation", } ### 2. The Updated Helper Functions ### def _safe_round(value, digits=2): """Rounds a number if it's a valid float/int, otherwise returns it as is.""" return round(value, digits) if isinstance(value, (float, int)) and pd.notna(value) else value def _pretty_column_name(raw_col: str) -> str: """ Takes a raw column name from the DataFrame and returns a "pretty" version. Handles three cases: 1. Fixed names (e.g., 'User/organization' -> 'Submitter'). 2. Dynamic names (e.g., 'ds1000_validation score' -> 'DS1000 Validation Score'). 3. Fallback for any other names. """ # Case 1: Handle fixed, special-case mappings first. fixed_mappings = { 'Agent': 'Agent', 'Agent description': 'Agent Description', 'User/organization': 'Submitter', 'Submission date': 'Date', 'Overall': 'Overall Score', 'Overall cost': 'Overall Cost', 'Logs': 'Logs' } if raw_col in fixed_mappings: return fixed_mappings[raw_col] # Case 2: Handle dynamic names by finding the longest matching base name. # We sort by length (desc) to match 'core_bench_validation' before 'core_bench'. sorted_base_names = sorted(INFORMAL_TO_FORMAL_NAME_MAP.keys(), key=len, reverse=True) for base_name in sorted_base_names: if raw_col.startswith(base_name): formal_name = INFORMAL_TO_FORMAL_NAME_MAP[base_name] # Get the metric part (e.g., ' score' or ' cost 95% CI') metric_part = raw_col[len(base_name):].strip() # Capitalize the metric part correctly (e.g., 'score' -> 'Score') pretty_metric = metric_part.capitalize() return f"{formal_name} {pretty_metric}" # Case 3: If no specific rule applies, just make it title case. return raw_col.title() def create_pretty_tag_map(raw_tag_map: dict, name_map: dict) -> dict: """ Converts a tag map with raw names into a tag map with pretty, formal names. Args: raw_tag_map: The map with raw keys and values (e.g., {'lit': ['litqa2_validation']}). name_map: The INFORMAL_TO_FORMAL_NAME_MAP used for translation. Returns: A new dictionary with pretty names (e.g., {'Literature Understanding': ['Litqa2 Validation']}). """ pretty_map = {} # A reverse map to find raw keys from formal names if needed, though not used here # This is just for understanding; the main logic uses the forward map. # Helper to get pretty name with a fallback def get_pretty(raw_name): return name_map.get(raw_name, raw_name.replace("_", " ").title()) for raw_key, raw_value_list in raw_tag_map.items(): pretty_key = get_pretty(raw_key) pretty_value_list = [get_pretty(raw_val) for raw_val in raw_value_list] pretty_map[pretty_key] = sorted(list(set(pretty_value_list))) return pretty_map def transform_raw_dataframe(raw_df: pd.DataFrame) -> pd.DataFrame: """ Transforms a raw leaderboard DataFrame into a presentation-ready format. This function performs two main actions: 1. Rounds all numeric metric values (columns containing 'score' or 'cost'). 2. Renames all columns to a "pretty", human-readable format. Args: raw_df (pd.DataFrame): The DataFrame with raw data and column names like 'agent_name', 'overall/score', 'tag/code/cost'. Returns: pd.DataFrame: A new DataFrame ready for display. """ if not isinstance(raw_df, pd.DataFrame): raise TypeError("Input 'raw_df' must be a pandas DataFrame.") df = raw_df.copy() # Create the mapping for pretty column names pretty_cols_map = {col: _pretty_column_name(col) for col in df.columns} # Rename the columns and return the new DataFrame transformed_df = df.rename(columns=pretty_cols_map) # Apply safe rounding to all metric columns for col in transformed_df.columns: if 'Score' in col or 'Cost' in col: transformed_df[col] = transformed_df[col].apply(_safe_round) logger.info("Raw DataFrame transformed: numbers rounded and columns renamed.") return transformed_df class DataTransformer: """ Visualizes a pre-processed leaderboard DataFrame. This class takes a "pretty" DataFrame and a tag map, and provides methods to view filtered versions of the data and generate plots. """ def __init__(self, dataframe: pd.DataFrame, tag_map: dict[str, list[str]]): """ Initializes the viewer. Args: dataframe (pd.DataFrame): The presentation-ready leaderboard data. tag_map (dict): A map of formal tag names to formal task names. """ if not isinstance(dataframe, pd.DataFrame): raise TypeError("Input 'dataframe' must be a pandas DataFrame.") if not isinstance(tag_map, dict): raise TypeError("Input 'tag_map' must be a dictionary.") self.data = dataframe self.tag_map = tag_map logger.info(f"DataTransformer initialized with a DataFrame of shape {self.data.shape}.") def view( self, tag: Optional[str] = "Overall", # Default to "Overall" for clarity use_plotly: bool = False, ) -> tuple[pd.DataFrame, dict[str, go.Figure]]: """ Generates a filtered view of the DataFrame and a corresponding scatter plot. """ if self.data.empty: logger.warning("No data available to view.") return self.data, {} # --- 1. Determine Primary and Group Metrics Based on the Tag --- if tag is None or tag == "Overall": primary_metric = "Overall" group_metrics = list(self.tag_map.keys()) else: primary_metric = tag # For a specific tag, the group is its list of sub-tasks. group_metrics = self.tag_map.get(tag, []) # --- 2. Sort the DataFrame by the Primary Score --- primary_score_col = f"{primary_metric} Score" df_sorted = self.data if primary_score_col in self.data.columns: df_sorted = self.data.sort_values(primary_score_col, ascending=False, na_position='last') # --- 3. Build the List of Columns to Display --- base_cols = ["Agent", "Submitter"] new_cols = ["Openness", "Degree of Control"] ending_cols = ["Date", "Logs"] # Start with the primary metric score and cost metrics_to_display = [primary_score_col, f"{primary_metric} Cost"] # Add the score and cost for each item in our group for item in group_metrics: metrics_to_display.append(f"{item} Score") metrics_to_display.append(f"{item} Cost") # Combine base columns with metric columns, ensuring uniqueness and order final_cols_ordered = base_cols + list(dict.fromkeys(metrics_to_display))+ new_cols + ending_cols # Filter to only include columns that actually exist in our DataFrame df_view = df_sorted.copy() for col in final_cols_ordered: if col not in df_view.columns: df_view[col] = pd.NA df_view = df_view[final_cols_ordered].reset_index(drop=True) # Calculated and add "Categories Attempted" column if primary_metric == "Overall": def calculate_attempted(row): main_categories = ['Literature Understanding', 'Data Analysis', 'Code Execution', 'Discovery'] count = sum(1 for category in main_categories if pd.notna(row.get(f"{category} Cost"))) # Return the formatted string with the correct emoji if count == 4: return f"4/4 ✅" if count == 0: return f"0/4 🚫" return f"{count}/4 ⚠️" # Apply the function row-wise to create the new column attempted_column = df_view.apply(calculate_attempted, axis=1) # Insert the new column at a nice position (e.g., after "Date") df_view.insert(2, "Categories Attempted", attempted_column) else: total_benchmarks = len(group_metrics) def calculate_benchmarks_attempted(row): # Count how many benchmarks in this category have COST data reported count = sum(1 for benchmark in group_metrics if pd.notna(row.get(f"{benchmark} Cost"))) if count == total_benchmarks: return f"{count}/{total_benchmarks} ✅" elif count == 0: return f"{count}/{total_benchmarks} 🚫" else: return f"{count}/{total_benchmarks}⚠️" # Insert the new column, for example, after "Date" df_view.insert(2, "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1)) # --- 4. Generate the Scatter Plot for the Primary Metric --- plots: dict[str, go.Figure] = {} if use_plotly: primary_cost_col = f"{primary_metric} Cost" # Check if the primary score and cost columns exist in the FINAL view if primary_score_col in df_view.columns and primary_cost_col in df_view.columns: fig = _plot_scatter_plotly( data=df_view, x=primary_cost_col, y=primary_score_col, agent_col="Agent" ) # Use a consistent key for easy retrieval later plots['scatter_plot'] = fig else: logger.warning( f"Skipping plot for '{primary_metric}': score column '{primary_score_col}' " f"or cost column '{primary_cost_col}' not found." ) # Add an empty figure to avoid downstream errors plots['scatter_plot'] = go.Figure() return df_view, plots DEFAULT_Y_COLUMN = "Overall Score" DUMMY_X_VALUE_FOR_MISSING_COSTS = 0 def _plot_scatter_plotly( data: pd.DataFrame, x: Optional[str], y: str, agent_col: str = "Agent" ) -> go.Figure: # --- Steps 1-4: Data Validation and Preparation --- x_col_to_use = x y_col_to_use = y if y_col_to_use not in data.columns: logger.error(f"y-axis column '{y_col_to_use}' not found.") return go.Figure() if agent_col not in data.columns: logger.warning(f"Agent column '{agent_col}' not found.") return go.Figure() data_plot = data.copy() data_plot[y_col_to_use] = pd.to_numeric(data_plot[y_col_to_use], errors='coerce') x_axis_label = x if x else "Cost (Data N/A)" x_data_is_valid = False if x and x in data_plot.columns: try: data_plot[x_col_to_use] = pd.to_numeric(data_plot[x_col_to_use], errors='coerce') if data_plot[x_col_to_use].notna().any(): x_data_is_valid = True except Exception as e: logger.warning(f"Error converting x-column '{x_col_to_use}' to numeric: {e}") if not x_data_is_valid: dummy_x_col_name = "__dummy_x_for_plotting__" data_plot[dummy_x_col_name] = DUMMY_X_VALUE_FOR_MISSING_COSTS x_col_to_use = dummy_x_col_name logger.info("Using dummy x-values for plotting.") # --- Step 5: Clean Data and Initialize Figure --- data_plot.dropna(subset=[y_col_to_use, x_col_to_use], inplace=True) fig = go.Figure() if data_plot.empty: logger.warning(f"No valid data to plot for y='{y_col_to_use}' and x='{x_col_to_use}'.") return fig # Step 6 - Calculate and Draw the Efficiency Frontier Line --- if x_data_is_valid: # Sort by cost (ascending), then by score (descending) to break ties sorted_data = data_plot.sort_values(by=[x_col_to_use, y_col_to_use], ascending=[True, False]) frontier_points = [] max_score_so_far = float('-inf') for index, row in sorted_data.iterrows(): score = row[y_col_to_use] # If this point offers a better score than any we've seen before, # it's part of the frontier. if score > max_score_so_far: frontier_points.append({'x': row[x_col_to_use], 'y': score}) max_score_so_far = score # Add the frontier line trace to the plot if we found any points if frontier_points: frontier_df = pd.DataFrame(frontier_points) fig.add_trace(go.Scatter( x=frontier_df['x'], y=frontier_df['y'], mode='lines', name='Efficiency Frontier', line=dict(color='firebrick', width=2, dash='dash'), hoverinfo='skip' # The line doesn't need a hover tooltip )) # --- Step 7: Plot Individual Agent Markers (No changes here) --- for agent, group in data_plot.groupby(agent_col): hover_x_display = "%{x:.2f}" if x_data_is_valid else "N/A" fig.add_trace(go.Scatter( x=group[x_col_to_use], y=group[y_col_to_use], mode='markers', name=str(agent), hovertemplate=f"{str(agent)}
{x_axis_label}: {hover_x_display}
{y_col_to_use}: %{{y:.2f}}""", marker=dict(size=10, opacity=0.8) )) # --- Step 8: Configure Layout (No changes here) --- xaxis_config = dict(title=x_axis_label) if not x_data_is_valid: xaxis_config['range'] = [DUMMY_X_VALUE_FOR_MISSING_COSTS - 1, DUMMY_X_VALUE_FOR_MISSING_COSTS + 1] xaxis_config['tickvals'] = [DUMMY_X_VALUE_FOR_MISSING_COSTS] else: xaxis_config['rangemode'] = "tozero" fig.update_layout( title=f"{y_col_to_use} vs. {x_axis_label}", xaxis=xaxis_config, yaxis=dict(title=y_col_to_use, rangemode="tozero"), legend_title_text=agent_col ) return fig def format_cost_column(df: pd.DataFrame, cost_col_name: str) -> pd.DataFrame: """ Applies custom formatting to a cost column based on its corresponding score column. - If cost is not null, it remains unchanged. - If cost is null but score is not, it becomes "Missing Cost". - If both cost and score are null, it becomes "Not Attempted". Args: df: The DataFrame to modify. cost_col_name: The name of the cost column to format (e.g., "Overall Cost"). Returns: The DataFrame with the formatted cost column. """ # Find the corresponding score column by replacing "Cost" with "Score" score_col_name = cost_col_name.replace("Cost", "Score") # Ensure the score column actually exists to avoid errors if score_col_name not in df.columns: return df # Return the DataFrame unmodified if there's no matching score def apply_formatting_logic(row): cost_value = row[cost_col_name] score_value = row[score_col_name] status_color = "#ec4899" if pd.notna(cost_value) and isinstance(cost_value, (int, float)): return f"${cost_value:.2f}" elif pd.notna(score_value): return f'Missing Cost' # Score exists, but cost is missing else: return f'Not Attempted' # Neither score nor cost exists # Apply the logic to the specified cost column and update the DataFrame df[cost_col_name] = df.apply(apply_formatting_logic, axis=1) return df def format_score_column(df: pd.DataFrame, score_col_name: str) -> pd.DataFrame: """ Applies custom formatting to a score column for display. - If a score is 0 or NaN, it's displayed as a colored "0". - Other scores are formatted to two decimal places. """ status_color = "#ec4899" # The same color as your other status text # First, fill any NaN values with 0 so we only have one case to handle. # We must use reassignment to avoid the SettingWithCopyWarning. df[score_col_name] = df[score_col_name].fillna(0) def apply_formatting(score_value): # Now, we just check if the value is 0. if score_value == 0: return f'0.0' # For all other numbers, format them for consistency. if isinstance(score_value, (int, float)): return f"{score_value:.2f}" # Fallback for any unexpected non-numeric data return score_value # Apply the formatting and return the updated DataFrame return df.assign(**{score_col_name: df[score_col_name].apply(apply_formatting)})