asta-bench-leaderboard / leaderboard_transformer.py
Amber Tanaka
Asta Leaderboard First Draft (#3)
ee1b999 unverified
raw
history blame
17.7 kB
import plotly.graph_objects as go
import numpy as np
import pandas as pd
import logging
from typing import Optional, Any, Dict, List # Added List
from zoneinfo import ZoneInfo # Assuming this might be used by SuiteConfig/EvalResult or _get_dataframe
import json
import os
logger = logging.getLogger(__name__)
INFORMAL_TO_FORMAL_NAME_MAP = {
# Short Names
"lit": "Literature Understanding",
"data": "Data Analysis",
"code": "Code Execution",
"discovery": "Discovery",
# Long Raw Names
"arxivdigestables_validation": "Arxivdigestables Validation",
"sqa_dev": "Sqa Dev",
"litqa2_validation": "Litqa2 Validation",
"paper_finder_validation": "Paper Finder Validation",
"discoverybench_validation": "Discoverybench Validation",
"core_bench_validation": "Core Bench Validation",
"ds1000_validation": "DS1000 Validation",
"e2e_discovery_validation": "E2E Discovery Validation",
"super_validation": "Super Validation",
}
### 2. The Updated Helper Functions ###
def _safe_round(value, digits=2):
"""Rounds a number if it's a valid float/int, otherwise returns it as is."""
return round(value, digits) if isinstance(value, (float, int)) and pd.notna(value) else value
def _pretty_column_name(raw_col: str) -> str:
"""
Takes a raw column name from the DataFrame and returns a "pretty" version.
Handles three cases:
1. Fixed names (e.g., 'User/organization' -> 'Submitter').
2. Dynamic names (e.g., 'ds1000_validation score' -> 'DS1000 Validation Score').
3. Fallback for any other names.
"""
# Case 1: Handle fixed, special-case mappings first.
fixed_mappings = {
'Agent': 'Agent',
'Agent description': 'Agent Description',
'User/organization': 'Submitter',
'Submission date': 'Date',
'Overall': 'Overall Score',
'Overall cost': 'Overall Cost',
'Logs': 'Logs'
}
if raw_col in fixed_mappings:
return fixed_mappings[raw_col]
# Case 2: Handle dynamic names by finding the longest matching base name.
# We sort by length (desc) to match 'core_bench_validation' before 'core_bench'.
sorted_base_names = sorted(INFORMAL_TO_FORMAL_NAME_MAP.keys(), key=len, reverse=True)
for base_name in sorted_base_names:
if raw_col.startswith(base_name):
formal_name = INFORMAL_TO_FORMAL_NAME_MAP[base_name]
# Get the metric part (e.g., ' score' or ' cost 95% CI')
metric_part = raw_col[len(base_name):].strip()
# Capitalize the metric part correctly (e.g., 'score' -> 'Score')
pretty_metric = metric_part.capitalize()
return f"{formal_name} {pretty_metric}"
# Case 3: If no specific rule applies, just make it title case.
return raw_col.title()
def create_pretty_tag_map(raw_tag_map: dict, name_map: dict) -> dict:
"""
Converts a tag map with raw names into a tag map with pretty, formal names.
Args:
raw_tag_map: The map with raw keys and values (e.g., {'lit': ['litqa2_validation']}).
name_map: The INFORMAL_TO_FORMAL_NAME_MAP used for translation.
Returns:
A new dictionary with pretty names (e.g., {'Literature Understanding': ['Litqa2 Validation']}).
"""
pretty_map = {}
# A reverse map to find raw keys from formal names if needed, though not used here
# This is just for understanding; the main logic uses the forward map.
# Helper to get pretty name with a fallback
def get_pretty(raw_name):
return name_map.get(raw_name, raw_name.replace("_", " ").title())
for raw_key, raw_value_list in raw_tag_map.items():
pretty_key = get_pretty(raw_key)
pretty_value_list = [get_pretty(raw_val) for raw_val in raw_value_list]
pretty_map[pretty_key] = sorted(list(set(pretty_value_list)))
return pretty_map
def transform_raw_dataframe(raw_df: pd.DataFrame) -> pd.DataFrame:
"""
Transforms a raw leaderboard DataFrame into a presentation-ready format.
This function performs two main actions:
1. Rounds all numeric metric values (columns containing 'score' or 'cost').
2. Renames all columns to a "pretty", human-readable format.
Args:
raw_df (pd.DataFrame): The DataFrame with raw data and column names
like 'agent_name', 'overall/score', 'tag/code/cost'.
Returns:
pd.DataFrame: A new DataFrame ready for display.
"""
if not isinstance(raw_df, pd.DataFrame):
raise TypeError("Input 'raw_df' must be a pandas DataFrame.")
df = raw_df.copy()
# Create the mapping for pretty column names
pretty_cols_map = {col: _pretty_column_name(col) for col in df.columns}
# Rename the columns and return the new DataFrame
transformed_df = df.rename(columns=pretty_cols_map)
# Apply safe rounding to all metric columns
for col in transformed_df.columns:
if 'Score' in col or 'Cost' in col:
transformed_df[col] = transformed_df[col].apply(_safe_round)
logger.info("Raw DataFrame transformed: numbers rounded and columns renamed.")
return transformed_df
class DataTransformer:
"""
Visualizes a pre-processed leaderboard DataFrame.
This class takes a "pretty" DataFrame and a tag map, and provides
methods to view filtered versions of the data and generate plots.
"""
def __init__(self, dataframe: pd.DataFrame, tag_map: dict[str, list[str]]):
"""
Initializes the viewer.
Args:
dataframe (pd.DataFrame): The presentation-ready leaderboard data.
tag_map (dict): A map of formal tag names to formal task names.
"""
if not isinstance(dataframe, pd.DataFrame):
raise TypeError("Input 'dataframe' must be a pandas DataFrame.")
if not isinstance(tag_map, dict):
raise TypeError("Input 'tag_map' must be a dictionary.")
self.data = dataframe
self.tag_map = tag_map
logger.info(f"DataTransformer initialized with a DataFrame of shape {self.data.shape}.")
def view(
self,
tag: Optional[str] = "Overall", # Default to "Overall" for clarity
use_plotly: bool = False,
) -> tuple[pd.DataFrame, dict[str, go.Figure]]:
"""
Generates a filtered view of the DataFrame and a corresponding scatter plot.
"""
if self.data.empty:
logger.warning("No data available to view.")
return self.data, {}
# --- 1. Determine Primary and Group Metrics Based on the Tag ---
if tag is None or tag == "Overall":
primary_metric = "Overall"
group_metrics = list(self.tag_map.keys())
else:
primary_metric = tag
# For a specific tag, the group is its list of sub-tasks.
group_metrics = self.tag_map.get(tag, [])
# --- 2. Sort the DataFrame by the Primary Score ---
primary_score_col = f"{primary_metric} Score"
df_sorted = self.data
if primary_score_col in self.data.columns:
df_sorted = self.data.sort_values(primary_score_col, ascending=False, na_position='last')
# --- 3. Build the List of Columns to Display ---
base_cols = ["Agent", "Submitter"]
new_cols = ["Openness", "Degree of Control"]
ending_cols = ["Date", "Logs"]
# Start with the primary metric score and cost
metrics_to_display = [primary_score_col, f"{primary_metric} Cost"]
# Add the score and cost for each item in our group
for item in group_metrics:
metrics_to_display.append(f"{item} Score")
metrics_to_display.append(f"{item} Cost")
# Combine base columns with metric columns, ensuring uniqueness and order
final_cols_ordered = base_cols + list(dict.fromkeys(metrics_to_display))+ new_cols + ending_cols
# Filter to only include columns that actually exist in our DataFrame
df_view = df_sorted.copy()
for col in final_cols_ordered:
if col not in df_view.columns:
df_view[col] = pd.NA
df_view = df_view[final_cols_ordered].reset_index(drop=True)
# Calculated and add "Categories Attempted" column
if primary_metric == "Overall":
def calculate_attempted(row):
main_categories = ['Literature Understanding', 'Data Analysis', 'Code Execution', 'Discovery']
count = sum(1 for category in main_categories if pd.notna(row.get(f"{category} Cost")))
# Return the formatted string with the correct emoji
if count == 4:
return f"4/4 ✅"
if count == 0:
return f"0/4 🚫"
return f"{count}/4 ⚠️"
# Apply the function row-wise to create the new column
attempted_column = df_view.apply(calculate_attempted, axis=1)
# Insert the new column at a nice position (e.g., after "Date")
df_view.insert(2, "Categories Attempted", attempted_column)
else:
total_benchmarks = len(group_metrics)
def calculate_benchmarks_attempted(row):
# Count how many benchmarks in this category have COST data reported
count = sum(1 for benchmark in group_metrics if pd.notna(row.get(f"{benchmark} Cost")))
if count == total_benchmarks:
return f"{count}/{total_benchmarks} ✅"
elif count == 0:
return f"{count}/{total_benchmarks} 🚫"
else:
return f"{count}/{total_benchmarks}⚠️"
# Insert the new column, for example, after "Date"
df_view.insert(2, "Benchmarks Attempted", df_view.apply(calculate_benchmarks_attempted, axis=1))
# --- 4. Generate the Scatter Plot for the Primary Metric ---
plots: dict[str, go.Figure] = {}
if use_plotly:
primary_cost_col = f"{primary_metric} Cost"
# Check if the primary score and cost columns exist in the FINAL view
if primary_score_col in df_view.columns and primary_cost_col in df_view.columns:
fig = _plot_scatter_plotly(
data=df_view,
x=primary_cost_col,
y=primary_score_col,
agent_col="Agent"
)
# Use a consistent key for easy retrieval later
plots['scatter_plot'] = fig
else:
logger.warning(
f"Skipping plot for '{primary_metric}': score column '{primary_score_col}' "
f"or cost column '{primary_cost_col}' not found."
)
# Add an empty figure to avoid downstream errors
plots['scatter_plot'] = go.Figure()
return df_view, plots
DEFAULT_Y_COLUMN = "Overall Score"
DUMMY_X_VALUE_FOR_MISSING_COSTS = 0
def _plot_scatter_plotly(
data: pd.DataFrame,
x: Optional[str],
y: str,
agent_col: str = "Agent"
) -> go.Figure:
# --- Steps 1-4: Data Validation and Preparation ---
x_col_to_use = x
y_col_to_use = y
if y_col_to_use not in data.columns:
logger.error(f"y-axis column '{y_col_to_use}' not found.")
return go.Figure()
if agent_col not in data.columns:
logger.warning(f"Agent column '{agent_col}' not found.")
return go.Figure()
data_plot = data.copy()
data_plot[y_col_to_use] = pd.to_numeric(data_plot[y_col_to_use], errors='coerce')
x_axis_label = x if x else "Cost (Data N/A)"
x_data_is_valid = False
if x and x in data_plot.columns:
try:
data_plot[x_col_to_use] = pd.to_numeric(data_plot[x_col_to_use], errors='coerce')
if data_plot[x_col_to_use].notna().any():
x_data_is_valid = True
except Exception as e:
logger.warning(f"Error converting x-column '{x_col_to_use}' to numeric: {e}")
if not x_data_is_valid:
dummy_x_col_name = "__dummy_x_for_plotting__"
data_plot[dummy_x_col_name] = DUMMY_X_VALUE_FOR_MISSING_COSTS
x_col_to_use = dummy_x_col_name
logger.info("Using dummy x-values for plotting.")
# --- Step 5: Clean Data and Initialize Figure ---
data_plot.dropna(subset=[y_col_to_use, x_col_to_use], inplace=True)
fig = go.Figure()
if data_plot.empty:
logger.warning(f"No valid data to plot for y='{y_col_to_use}' and x='{x_col_to_use}'.")
return fig
# Step 6 - Calculate and Draw the Efficiency Frontier Line ---
if x_data_is_valid:
# Sort by cost (ascending), then by score (descending) to break ties
sorted_data = data_plot.sort_values(by=[x_col_to_use, y_col_to_use], ascending=[True, False])
frontier_points = []
max_score_so_far = float('-inf')
for index, row in sorted_data.iterrows():
score = row[y_col_to_use]
# If this point offers a better score than any we've seen before,
# it's part of the frontier.
if score > max_score_so_far:
frontier_points.append({'x': row[x_col_to_use], 'y': score})
max_score_so_far = score
# Add the frontier line trace to the plot if we found any points
if frontier_points:
frontier_df = pd.DataFrame(frontier_points)
fig.add_trace(go.Scatter(
x=frontier_df['x'],
y=frontier_df['y'],
mode='lines',
name='Efficiency Frontier',
line=dict(color='firebrick', width=2, dash='dash'),
hoverinfo='skip' # The line doesn't need a hover tooltip
))
# --- Step 7: Plot Individual Agent Markers (No changes here) ---
for agent, group in data_plot.groupby(agent_col):
hover_x_display = "%{x:.2f}" if x_data_is_valid else "N/A"
fig.add_trace(go.Scatter(
x=group[x_col_to_use],
y=group[y_col_to_use],
mode='markers',
name=str(agent),
hovertemplate=f"<b>{str(agent)}</b><br>{x_axis_label}: {hover_x_display}<br>{y_col_to_use}: %{{y:.2f}}""<extra></extra>",
marker=dict(size=10, opacity=0.8)
))
# --- Step 8: Configure Layout (No changes here) ---
xaxis_config = dict(title=x_axis_label)
if not x_data_is_valid:
xaxis_config['range'] = [DUMMY_X_VALUE_FOR_MISSING_COSTS - 1, DUMMY_X_VALUE_FOR_MISSING_COSTS + 1]
xaxis_config['tickvals'] = [DUMMY_X_VALUE_FOR_MISSING_COSTS]
else:
xaxis_config['rangemode'] = "tozero"
fig.update_layout(
title=f"{y_col_to_use} vs. {x_axis_label}",
xaxis=xaxis_config,
yaxis=dict(title=y_col_to_use, rangemode="tozero"),
legend_title_text=agent_col
)
return fig
def format_cost_column(df: pd.DataFrame, cost_col_name: str) -> pd.DataFrame:
"""
Applies custom formatting to a cost column based on its corresponding score column.
- If cost is not null, it remains unchanged.
- If cost is null but score is not, it becomes "Missing Cost".
- If both cost and score are null, it becomes "Not Attempted".
Args:
df: The DataFrame to modify.
cost_col_name: The name of the cost column to format (e.g., "Overall Cost").
Returns:
The DataFrame with the formatted cost column.
"""
# Find the corresponding score column by replacing "Cost" with "Score"
score_col_name = cost_col_name.replace("Cost", "Score")
# Ensure the score column actually exists to avoid errors
if score_col_name not in df.columns:
return df # Return the DataFrame unmodified if there's no matching score
def apply_formatting_logic(row):
cost_value = row[cost_col_name]
score_value = row[score_col_name]
status_color = "#ec4899"
if pd.notna(cost_value) and isinstance(cost_value, (int, float)):
return f"${cost_value:.2f}"
elif pd.notna(score_value):
return f'<span style="color: {status_color};">Missing Cost</span>' # Score exists, but cost is missing
else:
return f'<span style="color: {status_color};">Not Attempted</span>' # Neither score nor cost exists
# Apply the logic to the specified cost column and update the DataFrame
df[cost_col_name] = df.apply(apply_formatting_logic, axis=1)
return df
def format_score_column(df: pd.DataFrame, score_col_name: str) -> pd.DataFrame:
"""
Applies custom formatting to a score column for display.
- If a score is 0 or NaN, it's displayed as a colored "0".
- Other scores are formatted to two decimal places.
"""
status_color = "#ec4899" # The same color as your other status text
# First, fill any NaN values with 0 so we only have one case to handle.
# We must use reassignment to avoid the SettingWithCopyWarning.
df[score_col_name] = df[score_col_name].fillna(0)
def apply_formatting(score_value):
# Now, we just check if the value is 0.
if score_value == 0:
return f'<span style="color: {status_color};">0.0</span>'
# For all other numbers, format them for consistency.
if isinstance(score_value, (int, float)):
return f"{score_value:.2f}"
# Fallback for any unexpected non-numeric data
return score_value
# Apply the formatting and return the updated DataFrame
return df.assign(**{score_col_name: df[score_col_name].apply(apply_formatting)})