Spaces:
Paused
Paused
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import spaces
|
| 2 |
+
import os
|
| 3 |
+
import subprocess
|
| 4 |
+
import tempfile
|
| 5 |
+
import uuid
|
| 6 |
+
import glob
|
| 7 |
+
import shutil
|
| 8 |
+
import time
|
| 9 |
+
|
| 10 |
+
import gradio as gr
|
| 11 |
+
|
| 12 |
+
# Set environment variables
|
| 13 |
+
os.environ["PIXEL3DMM_CODE_BASE"] = "./"
|
| 14 |
+
os.environ["PIXEL3DMM_PREPROCESSED_DATA"] = "./proprocess_results"
|
| 15 |
+
os.environ["PIXEL3DMM_TRACKING_OUTPUT"] = "./tracking_results"
|
| 16 |
+
|
| 17 |
+
# Utility to stitch frames into a video
|
| 18 |
+
def make_video_from_frames(frames_dir, out_path, fps=15):
|
| 19 |
+
if not os.path.isdir(frames_dir):
|
| 20 |
+
return None
|
| 21 |
+
files = glob.glob(os.path.join(frames_dir, "*.jpg")) + glob.glob(os.path.join(frames_dir, "*.png"))
|
| 22 |
+
if not files:
|
| 23 |
+
return None
|
| 24 |
+
ext = files[0].split('.')[-1]
|
| 25 |
+
pattern = os.path.join(frames_dir, f"%05d.{ext}")
|
| 26 |
+
subprocess.run([
|
| 27 |
+
"ffmpeg", "-y", "-i", pattern,
|
| 28 |
+
"-r", str(fps), out_path
|
| 29 |
+
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 30 |
+
return out_path
|
| 31 |
+
|
| 32 |
+
# Function to probe video for duration and frame rate
|
| 33 |
+
def get_video_info(video_path):
|
| 34 |
+
"""
|
| 35 |
+
Probes the uploaded video and returns updated slider configs:
|
| 36 |
+
- seconds slider: max = int(duration)
|
| 37 |
+
- fps slider: max = int(orig_fps)
|
| 38 |
+
"""
|
| 39 |
+
if not video_path:
|
| 40 |
+
# Return default slider updates when no video is uploaded
|
| 41 |
+
return gr.update(maximum=10, value=3, step=1), gr.update(maximum=30, value=15, step=1)
|
| 42 |
+
|
| 43 |
+
# Use ffprobe to get JSON metadata
|
| 44 |
+
cmd = [
|
| 45 |
+
"ffprobe", "-v", "quiet",
|
| 46 |
+
"-print_format", "json",
|
| 47 |
+
"-show_streams", video_path
|
| 48 |
+
]
|
| 49 |
+
res = subprocess.run(cmd, capture_output=True, text=True)
|
| 50 |
+
try:
|
| 51 |
+
import json
|
| 52 |
+
data = json.loads(res.stdout)
|
| 53 |
+
stream = next(s for s in data.get('streams', []) if s.get('codec_type') == 'video')
|
| 54 |
+
duration = float(stream.get('duration') or data.get('format', {}).get('duration', 0))
|
| 55 |
+
fr = stream.get('r_frame_rate', '0/1')
|
| 56 |
+
num, den = fr.split('/')
|
| 57 |
+
orig_fps = float(num) / float(den) if float(den) else 30
|
| 58 |
+
except Exception:
|
| 59 |
+
duration, orig_fps = 10, 30
|
| 60 |
+
|
| 61 |
+
# Configure sliders based on actual video properties
|
| 62 |
+
seconds_cfg = gr.update(maximum=int(duration), value=min(int(duration), 3), step=1)
|
| 63 |
+
fps_cfg = gr.update(maximum=int(orig_fps), value=min(int(orig_fps), 15), step=1)
|
| 64 |
+
return seconds_cfg, fps_cfg
|
| 65 |
+
|
| 66 |
+
# Step 1: Trim video based on user-defined duration and fps based on user-defined duration and fps
|
| 67 |
+
@space.GPU()
|
| 68 |
+
def step1_trim(video_path, seconds, fps, state):
|
| 69 |
+
session_id = str(uuid.uuid4())
|
| 70 |
+
base_dir = os.path.join(os.environ["PIXEL3DMM_PREPROCESSED_DATA"], session_id)
|
| 71 |
+
state.update({"session_id": session_id, "base_dir": base_dir})
|
| 72 |
+
|
| 73 |
+
tmp = tempfile.mkdtemp()
|
| 74 |
+
trimmed = os.path.join(tmp, f"{session_id}.mp4")
|
| 75 |
+
subprocess.run([
|
| 76 |
+
"ffmpeg", "-y", "-i", video_path,
|
| 77 |
+
"-t", str(seconds), # user-specified duration
|
| 78 |
+
"-r", str(fps), # user-specified fps
|
| 79 |
+
trimmed
|
| 80 |
+
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 81 |
+
state["trimmed_path"] = trimmed
|
| 82 |
+
return f"β
Step 1: Trimmed to {seconds}s @{fps}fps", state
|
| 83 |
+
|
| 84 |
+
# Step 2: Preprocessing β cropped video
|
| 85 |
+
@space.GPU()
|
| 86 |
+
def step2_preprocess(state):
|
| 87 |
+
session_id = state["session_id"]
|
| 88 |
+
base_dir = state["base_dir"]
|
| 89 |
+
trimmed = state["trimmed_path"]
|
| 90 |
+
|
| 91 |
+
subprocess.run([
|
| 92 |
+
"python", "scripts/run_preprocessing.py",
|
| 93 |
+
"--video_or_images_path", trimmed
|
| 94 |
+
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 95 |
+
|
| 96 |
+
crop_dir = os.path.join(base_dir, "cropped")
|
| 97 |
+
out = os.path.join(os.path.dirname(trimmed), f"crop_{session_id}.mp4")
|
| 98 |
+
video = make_video_from_frames(crop_dir, out)
|
| 99 |
+
return "β
Step 2: Preprocessing complete", video, state
|
| 100 |
+
|
| 101 |
+
# Step 3: Normals inference β normals video
|
| 102 |
+
@space.GPU()
|
| 103 |
+
def step3_normals(state):
|
| 104 |
+
session_id = state["session_id"]
|
| 105 |
+
base_dir = state["base_dir"]
|
| 106 |
+
|
| 107 |
+
subprocess.run([
|
| 108 |
+
"python", "scripts/network_inference.py",
|
| 109 |
+
"model.prediction_type=normals", f"video_name={session_id}"
|
| 110 |
+
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 111 |
+
|
| 112 |
+
normals_dir = os.path.join(base_dir, "p3dmm", "normals")
|
| 113 |
+
out = os.path.join(os.path.dirname(state["trimmed_path"]), f"normals_{session_id}.mp4")
|
| 114 |
+
video = make_video_from_frames(normals_dir, out)
|
| 115 |
+
return "β
Step 3: Normals inference complete", video, state
|
| 116 |
+
|
| 117 |
+
# Step 4: UV map inference β uv map video
|
| 118 |
+
@space.GPU()
|
| 119 |
+
def step4_uv_map(state):
|
| 120 |
+
session_id = state["session_id"]
|
| 121 |
+
base_dir = state["base_dir"]
|
| 122 |
+
|
| 123 |
+
subprocess.run([
|
| 124 |
+
"python", "scripts/network_inference.py",
|
| 125 |
+
"model.prediction_type=uv_map", f"video_name={session_id}"
|
| 126 |
+
], check=True, stdout=subprocess.PIPE, stderr=subprocess.STDOUT)
|
| 127 |
+
|
| 128 |
+
uv_dir = os.path.join(base_dir, "p3dmm", "uv_map")
|
| 129 |
+
out = os.path.join(os.path.dirname(state["trimmed_path"]), f"uv_map_{session_id}.mp4")
|
| 130 |
+
video = make_video_from_frames(uv_dir, out)
|
| 131 |
+
return "β
Step 4: UV map inference complete", video, state
|
| 132 |
+
|
| 133 |
+
# Step 5: Tracking β final tracking video
|
| 134 |
+
@space.GPU()
|
| 135 |
+
def step5_track(state):
|
| 136 |
+
session_id = state["session_id"]
|
| 137 |
+
script = os.path.join(os.environ["PIXEL3DMM_CODE_BASE"], "scripts", "track.py")
|
| 138 |
+
cmd = [
|
| 139 |
+
"python", script,
|
| 140 |
+
f"video_name={session_id}"
|
| 141 |
+
]
|
| 142 |
+
try:
|
| 143 |
+
# capture both stdout & stderr
|
| 144 |
+
p = subprocess.run(cmd, stdout=subprocess.PIPE, stderr=subprocess.STDOUT, text=True, check=True)
|
| 145 |
+
except subprocess.CalledProcessError as e:
|
| 146 |
+
# e.stdout contains everything
|
| 147 |
+
err = f"β Tracking failed (exit {e.returncode}).\n\n{e.stdout}"
|
| 148 |
+
return err, None, state
|
| 149 |
+
|
| 150 |
+
# if we get here, it succeeded:
|
| 151 |
+
tracking_dir = os.path.join(os.environ["PIXEL3DMM_TRACKING_OUTPUT"], session_id, "frames")
|
| 152 |
+
out = os.path.join(os.path.dirname(state["trimmed_path"]), f"result_{session_id}.mp4")
|
| 153 |
+
video = make_video_from_frames(tracking_dir, out)
|
| 154 |
+
return "β
Step 5: Tracking complete", video, state
|
| 155 |
+
|
| 156 |
+
# Build Gradio UI
|
| 157 |
+
demo = gr.Blocks()
|
| 158 |
+
|
| 159 |
+
with demo:
|
| 160 |
+
gr.Markdown("## Video Processing Pipeline")
|
| 161 |
+
with gr.Row():
|
| 162 |
+
with gr.Column():
|
| 163 |
+
video_in = gr.Video(label="Upload video", height=512)
|
| 164 |
+
# Sliders for duration and fps
|
| 165 |
+
seconds_slider = gr.Slider(label="Duration (seconds)", minimum=2, maximum=10, step=1, value=3)
|
| 166 |
+
fps_slider = gr.Slider(label="Frame Rate (fps)", minimum=15, maximum=30, step=1, value=15)
|
| 167 |
+
status = gr.Textbox(label="Status", lines=2, interactive=False)
|
| 168 |
+
state = gr.State({})
|
| 169 |
+
with gr.Column():
|
| 170 |
+
with gr.Row():
|
| 171 |
+
crop_vid = gr.Video(label="Preprocessed", height=256)
|
| 172 |
+
normals_vid = gr.Video(label="Normals", height=256)
|
| 173 |
+
with gr.Row():
|
| 174 |
+
uv_vid = gr.Video(label="UV Map", height=256)
|
| 175 |
+
track_vid = gr.Video(label="Tracking", height=256)
|
| 176 |
+
run_btn = gr.Button("Run Pipeline")
|
| 177 |
+
|
| 178 |
+
# Update sliders after video upload
|
| 179 |
+
video_in.change(fn=get_video_info, inputs=video_in, outputs=[seconds_slider, fps_slider])
|
| 180 |
+
|
| 181 |
+
# Pipeline execution
|
| 182 |
+
(run_btn.click(fn=step1_trim, inputs=[video_in, seconds_slider, fps_slider, state], outputs=[status, state])
|
| 183 |
+
.then(fn=step2_preprocess, inputs=[state], outputs=[status, crop_vid, state])
|
| 184 |
+
.then(fn=step3_normals, inputs=[state], outputs=[status, normals_vid, state])
|
| 185 |
+
.then(fn=step4_uv_map, inputs=[state], outputs=[status, uv_vid, state])
|
| 186 |
+
.then(fn=step5_track, inputs=[state], outputs=[status, track_vid, state])
|
| 187 |
+
)
|
| 188 |
+
|
| 189 |
+
# ------------------------------------------------------------------
|
| 190 |
+
# START THE GRADIO SERVER
|
| 191 |
+
# ------------------------------------------------------------------
|
| 192 |
+
demo.queue()
|
| 193 |
+
|
| 194 |
+
demo.launch(share=True)
|
| 195 |
+
|