Spaces:
Sleeping
Sleeping
add ttm pipelines
Browse files- pipelines/cog_pipeline.py +524 -0
- pipelines/svd_pipeline.py +624 -0
- pipelines/utils.py +45 -0
- pipelines/wan_pipeline.py +559 -0
pipelines/cog_pipeline.py
ADDED
|
@@ -0,0 +1,524 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Noam Rotstein
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
#
|
| 8 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 11 |
+
# See the License for the specific language governing permissions and
|
| 12 |
+
# limitations under the License.
|
| 13 |
+
#
|
| 14 |
+
# Adapted from Hugging Face Diffusers (Apache-2.0):
|
| 15 |
+
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/cogvideo/pipeline_cogvideox_image2video.py
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
from dataclasses import dataclass
|
| 19 |
+
import math
|
| 20 |
+
from typing import Any, Callable, Dict, List, Optional, Tuple, Union
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import T5EncoderModel, T5Tokenizer
|
| 23 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 24 |
+
from diffusers.image_processor import PipelineImageInput
|
| 25 |
+
from diffusers.models import AutoencoderKLCogVideoX, CogVideoXTransformer3DModel
|
| 26 |
+
from diffusers.schedulers import CogVideoXDDIMScheduler, CogVideoXDPMScheduler
|
| 27 |
+
from diffusers.utils import (
|
| 28 |
+
is_torch_xla_available,
|
| 29 |
+
logging,
|
| 30 |
+
replace_example_docstring,
|
| 31 |
+
)
|
| 32 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 33 |
+
from diffusers.video_processor import VideoProcessor
|
| 34 |
+
from diffusers.pipelines.cogvideo.pipeline_output import CogVideoXPipelineOutput
|
| 35 |
+
from diffusers.pipelines.cogvideo.pipeline_cogvideox_image2video import retrieve_timesteps
|
| 36 |
+
from diffusers import CogVideoXImageToVideoPipeline
|
| 37 |
+
|
| 38 |
+
import torch.nn.functional as F
|
| 39 |
+
from pipelines.utils import load_video_to_tensor
|
| 40 |
+
|
| 41 |
+
except ImportError as e:
|
| 42 |
+
raise ImportError(f"Required module not found: {e}. Please install it before running this script. "
|
| 43 |
+
f"For installation instructions, see: https://github.com/zai-org/CogVideo")
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
if is_torch_xla_available():
|
| 48 |
+
import torch_xla.core.xla_model as xm
|
| 49 |
+
XLA_AVAILABLE = True
|
| 50 |
+
else:
|
| 51 |
+
XLA_AVAILABLE = False
|
| 52 |
+
except ImportError:
|
| 53 |
+
XLA_AVAILABLE = False
|
| 54 |
+
|
| 55 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 56 |
+
|
| 57 |
+
|
| 58 |
+
EXAMPLE_DOC_STRING = """
|
| 59 |
+
"""
|
| 60 |
+
|
| 61 |
+
|
| 62 |
+
class CogVideoXImageToVideoTTMPipeline(CogVideoXImageToVideoPipeline):
|
| 63 |
+
r"""
|
| 64 |
+
Pipeline for image-to-video generation using CogVideoX combined with Time to Move (TTM).
|
| 65 |
+
This model inherits from [`CogVideoXImageToVideoPipeline`].
|
| 66 |
+
"""
|
| 67 |
+
_optional_components = []
|
| 68 |
+
model_cpu_offload_seq = "text_encoder->transformer->vae"
|
| 69 |
+
|
| 70 |
+
_callback_tensor_inputs = [
|
| 71 |
+
"latents",
|
| 72 |
+
"prompt_embeds",
|
| 73 |
+
"negative_prompt_embeds",
|
| 74 |
+
]
|
| 75 |
+
|
| 76 |
+
def __init__(
|
| 77 |
+
self,
|
| 78 |
+
tokenizer: T5Tokenizer,
|
| 79 |
+
text_encoder: T5EncoderModel,
|
| 80 |
+
vae: AutoencoderKLCogVideoX,
|
| 81 |
+
transformer: CogVideoXTransformer3DModel,
|
| 82 |
+
scheduler: Union[CogVideoXDDIMScheduler, CogVideoXDPMScheduler],
|
| 83 |
+
):
|
| 84 |
+
super().__init__(
|
| 85 |
+
tokenizer=tokenizer,
|
| 86 |
+
text_encoder=text_encoder,
|
| 87 |
+
vae=vae,
|
| 88 |
+
transformer=transformer,
|
| 89 |
+
scheduler=scheduler,
|
| 90 |
+
)
|
| 91 |
+
|
| 92 |
+
self.register_modules(
|
| 93 |
+
tokenizer=tokenizer,
|
| 94 |
+
text_encoder=text_encoder,
|
| 95 |
+
vae=vae,
|
| 96 |
+
transformer=transformer,
|
| 97 |
+
scheduler=scheduler,
|
| 98 |
+
)
|
| 99 |
+
self.vae_scale_factor_spatial = (
|
| 100 |
+
2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
| 101 |
+
)
|
| 102 |
+
self.vae_scale_factor_temporal = (
|
| 103 |
+
self.vae.config.temporal_compression_ratio if getattr(self, "vae", None) else 4
|
| 104 |
+
)
|
| 105 |
+
self.vae_scaling_factor_image = self.vae.config.scaling_factor if getattr(self, "vae", None) else 0.7
|
| 106 |
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
@torch.no_grad()
|
| 110 |
+
def encode_frames(self, frames: torch.Tensor, vae_scale_factor: float = None) -> torch.Tensor:
|
| 111 |
+
"""Encode video frames into latent space with shape (B, F, C, H, W). Input shape (B, C, F, H, W), expected range [-1, 1]."""
|
| 112 |
+
latents = self.vae.encode(frames)[0].sample()
|
| 113 |
+
# latents = self.vae.encode(frames)[0].mode()
|
| 114 |
+
vae_scale_factor = vae_scale_factor or self.vae_scaling_factor_image
|
| 115 |
+
latents = latents * vae_scale_factor
|
| 116 |
+
return latents.permute(0, 2, 1, 3, 4).contiguous() # shape (B, C, F, H, W) -> (B, F, C, H, W)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
def convert_rgb_mask_to_latent_mask(self, mask: torch.Tensor) -> torch.Tensor:
|
| 120 |
+
"""
|
| 121 |
+
Convert a per-frame mask [T, 1, H, W] to latent resolution [1, T_latent, 1, H', W'].
|
| 122 |
+
T_latent groups frames by the temporal VAE downsample factor k = vae_scale_factor_temporal:
|
| 123 |
+
[0], [1..k], [k+1..2k], ...
|
| 124 |
+
"""
|
| 125 |
+
k = self.vae_scale_factor_temporal
|
| 126 |
+
|
| 127 |
+
mask0 = mask[0:1] # [1,1,H,W]
|
| 128 |
+
mask1 = mask[1::k] # [T'-1,1,H,W]
|
| 129 |
+
sampled = torch.cat([mask0, mask1], dim=0) # [T',1,H,W]
|
| 130 |
+
pooled = sampled.permute(1, 0, 2, 3).unsqueeze(0)
|
| 131 |
+
|
| 132 |
+
# Up-sample spatially to match latent spatial resolution
|
| 133 |
+
s = self.vae_scale_factor_spatial
|
| 134 |
+
H_latent = pooled.shape[-2] // s
|
| 135 |
+
W_latent = pooled.shape[-1] // s
|
| 136 |
+
pooled = F.interpolate(pooled, size=(pooled.shape[2], H_latent, W_latent), mode="nearest")
|
| 137 |
+
|
| 138 |
+
# Back to [1, T_latent, 1, H, W]
|
| 139 |
+
latent_mask = pooled.permute(0, 2, 1, 3, 4)
|
| 140 |
+
|
| 141 |
+
return latent_mask
|
| 142 |
+
|
| 143 |
+
|
| 144 |
+
@torch.no_grad()
|
| 145 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 146 |
+
def __call__(
|
| 147 |
+
self,
|
| 148 |
+
image: PipelineImageInput,
|
| 149 |
+
prompt: Optional[Union[str, List[str]]] = None,
|
| 150 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
| 151 |
+
height: Optional[int] = None,
|
| 152 |
+
width: Optional[int] = None,
|
| 153 |
+
num_frames: int = 49,
|
| 154 |
+
num_inference_steps: int = 50,
|
| 155 |
+
timesteps: Optional[List[int]] = None,
|
| 156 |
+
guidance_scale: float = 6,
|
| 157 |
+
use_dynamic_cfg: bool = False,
|
| 158 |
+
num_videos_per_prompt: int = 1,
|
| 159 |
+
eta: float = 0.0,
|
| 160 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 161 |
+
latents: Optional[torch.FloatTensor] = None,
|
| 162 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 163 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
| 164 |
+
output_type: str = "pil",
|
| 165 |
+
return_dict: bool = True,
|
| 166 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 167 |
+
callback_on_step_end: Optional[
|
| 168 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 169 |
+
] = None,
|
| 170 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 171 |
+
max_sequence_length: int = 226,
|
| 172 |
+
motion_signal_video_path: Optional[str] = None,
|
| 173 |
+
motion_signal_mask_path: Optional[str] = None,
|
| 174 |
+
tweak_index: int = 0,
|
| 175 |
+
tstrong_index: int = 0
|
| 176 |
+
) -> Union[CogVideoXPipelineOutput, Tuple]:
|
| 177 |
+
"""
|
| 178 |
+
Function invoked when calling the pipeline for generation.
|
| 179 |
+
|
| 180 |
+
Args:
|
| 181 |
+
image (`PipelineImageInput`):
|
| 182 |
+
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
|
| 183 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 184 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 185 |
+
instead.
|
| 186 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 187 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 188 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 189 |
+
less than `1`).
|
| 190 |
+
height (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
| 191 |
+
The height in pixels of the generated image. This is set to 480 by default for the best results.
|
| 192 |
+
width (`int`, *optional*, defaults to self.transformer.config.sample_height * self.vae_scale_factor_spatial):
|
| 193 |
+
The width in pixels of the generated image. This is set to 720 by default for the best results.
|
| 194 |
+
num_frames (`int`, defaults to `48`):
|
| 195 |
+
Number of frames to generate. Must be divisible by self.vae_scale_factor_temporal. Generated video will
|
| 196 |
+
contain 1 extra frame because CogVideoX is conditioned with (num_seconds * fps + 1) frames where
|
| 197 |
+
num_seconds is 6 and fps is 8. However, since videos can be saved at any fps, the only condition that
|
| 198 |
+
needs to be satisfied is that of divisibility mentioned above.
|
| 199 |
+
num_inference_steps (`int`, *optional*, defaults to 50):
|
| 200 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 201 |
+
expense of slower inference.
|
| 202 |
+
timesteps (`List[int]`, *optional*):
|
| 203 |
+
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument
|
| 204 |
+
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is
|
| 205 |
+
passed will be used. Must be in descending order.
|
| 206 |
+
guidance_scale (`float`, *optional*, defaults to 7.0):
|
| 207 |
+
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
|
| 208 |
+
`guidance_scale` is defined as `w` of equation 2. of [Imagen
|
| 209 |
+
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
|
| 210 |
+
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
|
| 211 |
+
usually at the expense of lower image quality.
|
| 212 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 213 |
+
The number of videos to generate per prompt.
|
| 214 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 215 |
+
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html)
|
| 216 |
+
to make generation deterministic.
|
| 217 |
+
latents (`torch.FloatTensor`, *optional*):
|
| 218 |
+
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image
|
| 219 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 220 |
+
tensor will be generated by sampling using the supplied random `generator`.
|
| 221 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 222 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
| 223 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
| 224 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
| 225 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
| 226 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
| 227 |
+
argument.
|
| 228 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 229 |
+
The output format of the generate image. Choose between
|
| 230 |
+
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`.
|
| 231 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 232 |
+
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead
|
| 233 |
+
of a plain tuple.
|
| 234 |
+
attention_kwargs (`dict`, *optional*):
|
| 235 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 236 |
+
`self.processor` in
|
| 237 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 238 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 239 |
+
A function that calls at the end of each denoising steps during the inference. The function is called
|
| 240 |
+
with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int,
|
| 241 |
+
callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by
|
| 242 |
+
`callback_on_step_end_tensor_inputs`.
|
| 243 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 244 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 245 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 246 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 247 |
+
max_sequence_length (`int`, defaults to `226`):
|
| 248 |
+
Maximum sequence length in encoded prompt. Must be consistent with
|
| 249 |
+
`self.transformer.config.max_text_seq_length` otherwise may lead to poor results.
|
| 250 |
+
motion_signal_video_path (`str`):
|
| 251 |
+
Path to the video file containing the motion signal to guide the motion of the generated video.
|
| 252 |
+
It should be a crude version of the reference video, with pixels with motion dragged to their target.
|
| 253 |
+
motion_signal_mask_path (`str`):
|
| 254 |
+
Path to the mask video file containing the motion mask of TTM.
|
| 255 |
+
The mask should be a binary with the conditioning motion pixels being 1 and the rest being 0.
|
| 256 |
+
tweak_index (`int`):
|
| 257 |
+
The index of the tweak, from which the denoising process starts.
|
| 258 |
+
tstrong_index (`int`):
|
| 259 |
+
The index of the tweak, from which the denoising process starts in the motion conditioned region.
|
| 260 |
+
Examples:
|
| 261 |
+
|
| 262 |
+
Returns:
|
| 263 |
+
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] or `tuple`:
|
| 264 |
+
[`~pipelines.cogvideo.pipeline_output.CogVideoXPipelineOutput`] if `return_dict` is True, otherwise a
|
| 265 |
+
`tuple`. When returning a tuple, the first element is a list with the generated images.
|
| 266 |
+
"""
|
| 267 |
+
|
| 268 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 269 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 270 |
+
|
| 271 |
+
height = height or self.transformer.config.sample_height * self.vae_scale_factor_spatial
|
| 272 |
+
width = width or self.transformer.config.sample_width * self.vae_scale_factor_spatial
|
| 273 |
+
num_frames = num_frames or self.transformer.config.sample_frames
|
| 274 |
+
|
| 275 |
+
# 1. Check inputs. Raise error if not correct
|
| 276 |
+
self.check_inputs(
|
| 277 |
+
image=image,
|
| 278 |
+
prompt=prompt,
|
| 279 |
+
height=height,
|
| 280 |
+
width=width,
|
| 281 |
+
negative_prompt=negative_prompt,
|
| 282 |
+
callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs,
|
| 283 |
+
latents=latents,
|
| 284 |
+
prompt_embeds=prompt_embeds,
|
| 285 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 286 |
+
)
|
| 287 |
+
self._guidance_scale = guidance_scale
|
| 288 |
+
self._attention_kwargs = attention_kwargs
|
| 289 |
+
self._current_timestep = None
|
| 290 |
+
self._interrupt = False
|
| 291 |
+
|
| 292 |
+
if motion_signal_mask_path is None:
|
| 293 |
+
raise ValueError("`motion_signal_mask_path` is required for TTM.")
|
| 294 |
+
if motion_signal_video_path is None:
|
| 295 |
+
raise ValueError("`motion_signal_video_path` is required for TTM.")
|
| 296 |
+
|
| 297 |
+
# 2. Default call parameters
|
| 298 |
+
if prompt is not None and isinstance(prompt, str):
|
| 299 |
+
batch_size = 1
|
| 300 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 301 |
+
batch_size = len(prompt)
|
| 302 |
+
else:
|
| 303 |
+
batch_size = prompt_embeds.shape[0]
|
| 304 |
+
|
| 305 |
+
device = self._execution_device
|
| 306 |
+
|
| 307 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 308 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
| 309 |
+
# corresponds to doing no classifier free guidance.
|
| 310 |
+
do_classifier_free_guidance = guidance_scale > 1.0
|
| 311 |
+
|
| 312 |
+
# 3. Encode input prompt
|
| 313 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 314 |
+
prompt=prompt,
|
| 315 |
+
negative_prompt=negative_prompt,
|
| 316 |
+
do_classifier_free_guidance=do_classifier_free_guidance,
|
| 317 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 318 |
+
prompt_embeds=prompt_embeds,
|
| 319 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 320 |
+
max_sequence_length=max_sequence_length,
|
| 321 |
+
device=device,
|
| 322 |
+
)
|
| 323 |
+
if do_classifier_free_guidance:
|
| 324 |
+
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0)
|
| 325 |
+
|
| 326 |
+
# 4. Prepare timesteps
|
| 327 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, timesteps)
|
| 328 |
+
self._num_timesteps = len(timesteps)
|
| 329 |
+
|
| 330 |
+
# 5. Prepare latents
|
| 331 |
+
latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
|
| 332 |
+
|
| 333 |
+
# For CogVideoX 1.5, the latent frames should be padded to make it divisible by patch_size_t
|
| 334 |
+
patch_size_t = self.transformer.config.patch_size_t
|
| 335 |
+
additional_frames = 0
|
| 336 |
+
if patch_size_t is not None and latent_frames % patch_size_t != 0:
|
| 337 |
+
additional_frames = patch_size_t - latent_frames % patch_size_t
|
| 338 |
+
num_frames += additional_frames * self.vae_scale_factor_temporal
|
| 339 |
+
|
| 340 |
+
image = self.video_processor.preprocess(image, height=height, width=width).to(
|
| 341 |
+
device, dtype=prompt_embeds.dtype
|
| 342 |
+
)
|
| 343 |
+
|
| 344 |
+
latent_channels = self.transformer.config.in_channels // 2
|
| 345 |
+
latents, image_latents = self.prepare_latents(
|
| 346 |
+
image,
|
| 347 |
+
batch_size * num_videos_per_prompt,
|
| 348 |
+
latent_channels,
|
| 349 |
+
num_frames,
|
| 350 |
+
height,
|
| 351 |
+
width,
|
| 352 |
+
prompt_embeds.dtype,
|
| 353 |
+
device,
|
| 354 |
+
generator,
|
| 355 |
+
latents,
|
| 356 |
+
)
|
| 357 |
+
|
| 358 |
+
# 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
| 359 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
| 360 |
+
|
| 361 |
+
# 7. Create rotary embeds if required
|
| 362 |
+
image_rotary_emb = (
|
| 363 |
+
self._prepare_rotary_positional_embeddings(height, width, latents.size(1), device)
|
| 364 |
+
if self.transformer.config.use_rotary_positional_embeddings
|
| 365 |
+
else None
|
| 366 |
+
)
|
| 367 |
+
|
| 368 |
+
# 8. Create ofs embeds if required
|
| 369 |
+
ofs_emb = None if self.transformer.config.ofs_embed_dim is None else latents.new_full((1,), fill_value=2.0)
|
| 370 |
+
|
| 371 |
+
# 9. Initialize for TTM
|
| 372 |
+
ref_vid = load_video_to_tensor(motion_signal_video_path).to(device=device) # shape [1, C, T, H, W]
|
| 373 |
+
refB, refC, refT, refH, refW = ref_vid.shape
|
| 374 |
+
ref_vid = F.interpolate(
|
| 375 |
+
ref_vid.permute(0, 2, 1, 3, 4).reshape(refB*refT, refC, refH, refW),
|
| 376 |
+
size=(height, width), mode="bicubic", align_corners=True,
|
| 377 |
+
).reshape(refB, refT, refC, height, width).permute(0, 2, 1, 3, 4)
|
| 378 |
+
|
| 379 |
+
ref_vid = self.video_processor.normalize(ref_vid.to(dtype=self.vae.dtype)) # Normalize and convert dtype for VAE encoding
|
| 380 |
+
ref_latents = self.encode_frames(ref_vid).float().detach() # shape [1, T, C, H, W]
|
| 381 |
+
|
| 382 |
+
ref_mask = load_video_to_tensor(motion_signal_mask_path).to(device=device) # shape [1, C, T, H, W]
|
| 383 |
+
mB, mC, mT, mH, mW = ref_mask.shape
|
| 384 |
+
|
| 385 |
+
ref_mask = F.interpolate(
|
| 386 |
+
ref_mask.permute(0, 2, 1, 3, 4).reshape(mB*mT, mC, mH, mW),
|
| 387 |
+
size=(height, width), mode="nearest",
|
| 388 |
+
).reshape(mB, mT, mC, height, width).permute(0, 2, 1, 3, 4)
|
| 389 |
+
ref_mask = ref_mask[0].permute(1, 0, 2, 3).contiguous() # (1, C, T, H, W) -> (T, H, W, 1)
|
| 390 |
+
|
| 391 |
+
if len(ref_mask.shape) == 4:
|
| 392 |
+
ref_mask = ref_mask.unsqueeze(0)
|
| 393 |
+
|
| 394 |
+
ref_mask = ref_mask[0,:,:1].contiguous() # (1, T, C, H, W) -> (T, 1, H, W)
|
| 395 |
+
ref_mask = (ref_mask > 0.5).float().max(dim=1, keepdim=True)[0] # [T, 1, H, W]
|
| 396 |
+
motion_mask = self.convert_rgb_mask_to_latent_mask(ref_mask) # [1, T, 1, H, W]
|
| 397 |
+
background_mask = 1.0 - motion_mask
|
| 398 |
+
|
| 399 |
+
if tweak_index >= 0:
|
| 400 |
+
tweak = self.scheduler.timesteps[tweak_index]
|
| 401 |
+
fixed_noise = randn_tensor(
|
| 402 |
+
ref_latents.shape,
|
| 403 |
+
generator=generator,
|
| 404 |
+
device=ref_latents.device,
|
| 405 |
+
dtype=ref_latents.dtype,
|
| 406 |
+
)
|
| 407 |
+
noisy_latents = self.scheduler.add_noise(ref_latents, fixed_noise, tweak.long())
|
| 408 |
+
latents = noisy_latents.to(dtype=latents.dtype, device=latents.device)
|
| 409 |
+
else:
|
| 410 |
+
tweak = torch.tensor(-1)
|
| 411 |
+
fixed_noise = randn_tensor(
|
| 412 |
+
ref_latents.shape,
|
| 413 |
+
generator=generator,
|
| 414 |
+
device=ref_latents.device,
|
| 415 |
+
dtype=ref_latents.dtype,
|
| 416 |
+
)
|
| 417 |
+
tweak_index = 0
|
| 418 |
+
|
| 419 |
+
# 10. Denoising loop
|
| 420 |
+
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0)
|
| 421 |
+
|
| 422 |
+
# logging
|
| 423 |
+
# ------------------------------------------------------------------
|
| 424 |
+
with self.progress_bar(total=len(timesteps) - tweak_index) as progress_bar:
|
| 425 |
+
# for DPM-solver++
|
| 426 |
+
old_pred_original_sample = None
|
| 427 |
+
for i, t in enumerate(timesteps[tweak_index:]):
|
| 428 |
+
if self.interrupt:
|
| 429 |
+
continue
|
| 430 |
+
|
| 431 |
+
self._current_timestep = t
|
| 432 |
+
latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents
|
| 433 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 434 |
+
|
| 435 |
+
latent_image_input = torch.cat([image_latents] * 2) if do_classifier_free_guidance else image_latents
|
| 436 |
+
latent_model_input = torch.cat([latent_model_input, latent_image_input], dim=2)
|
| 437 |
+
|
| 438 |
+
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
|
| 439 |
+
timestep = t.expand(latent_model_input.shape[0])
|
| 440 |
+
|
| 441 |
+
# predict noise model_output
|
| 442 |
+
noise_pred = self.transformer(
|
| 443 |
+
hidden_states=latent_model_input,
|
| 444 |
+
encoder_hidden_states=prompt_embeds,
|
| 445 |
+
timestep=timestep,
|
| 446 |
+
ofs=ofs_emb,
|
| 447 |
+
image_rotary_emb=image_rotary_emb,
|
| 448 |
+
attention_kwargs=attention_kwargs,
|
| 449 |
+
return_dict=False,
|
| 450 |
+
)[0]
|
| 451 |
+
noise_pred = noise_pred.float()
|
| 452 |
+
|
| 453 |
+
# perform guidance
|
| 454 |
+
if use_dynamic_cfg:
|
| 455 |
+
self._guidance_scale = 1 + guidance_scale * (
|
| 456 |
+
(1 - math.cos(math.pi * ((num_inference_steps - t.item()) / num_inference_steps) ** 5.0)) / 2
|
| 457 |
+
)
|
| 458 |
+
if do_classifier_free_guidance:
|
| 459 |
+
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
|
| 460 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)
|
| 461 |
+
|
| 462 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 463 |
+
if not isinstance(self.scheduler, CogVideoXDPMScheduler):
|
| 464 |
+
latents, old_pred_original_sample = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)
|
| 465 |
+
else:
|
| 466 |
+
latents, old_pred_original_sample = self.scheduler.step(
|
| 467 |
+
noise_pred,
|
| 468 |
+
old_pred_original_sample,
|
| 469 |
+
t,
|
| 470 |
+
timesteps[i - 1] if i > 0 else None,
|
| 471 |
+
latents,
|
| 472 |
+
**extra_step_kwargs,
|
| 473 |
+
return_dict=False,
|
| 474 |
+
)
|
| 475 |
+
|
| 476 |
+
# In between tweak and tstrong, replace mask with noisy reference latents
|
| 477 |
+
in_between_tweak_tstrong = (i+tweak_index) < tstrong_index
|
| 478 |
+
|
| 479 |
+
if in_between_tweak_tstrong:
|
| 480 |
+
if i+tweak_index+1 < len(timesteps):
|
| 481 |
+
prev_t = timesteps[i+tweak_index+1]
|
| 482 |
+
noisy_latents = self.scheduler.add_noise(ref_latents, fixed_noise, prev_t.long()).to(dtype=latents.dtype, device=latents.device)
|
| 483 |
+
latents = latents * background_mask + noisy_latents * motion_mask
|
| 484 |
+
else:
|
| 485 |
+
latents = latents * background_mask + ref_latents * motion_mask
|
| 486 |
+
|
| 487 |
+
latents = latents.to(prompt_embeds.dtype)
|
| 488 |
+
|
| 489 |
+
# call the callback, if provided
|
| 490 |
+
if callback_on_step_end is not None:
|
| 491 |
+
callback_kwargs = {}
|
| 492 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 493 |
+
callback_kwargs[k] = locals()[k]
|
| 494 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 495 |
+
|
| 496 |
+
latents = callback_outputs.pop("latents", latents)
|
| 497 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 498 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 499 |
+
|
| 500 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 501 |
+
progress_bar.update()
|
| 502 |
+
|
| 503 |
+
if XLA_AVAILABLE:
|
| 504 |
+
xm.mark_step()
|
| 505 |
+
|
| 506 |
+
self._current_timestep = None
|
| 507 |
+
|
| 508 |
+
if not output_type == "latent":
|
| 509 |
+
# Discard any padding frames that were added for CogVideoX 1.5
|
| 510 |
+
latents = latents[:, additional_frames:]
|
| 511 |
+
frames = self.decode_latents(latents)
|
| 512 |
+
video = self.video_processor.postprocess_video(video=frames, output_type=output_type)
|
| 513 |
+
else:
|
| 514 |
+
video = latents
|
| 515 |
+
|
| 516 |
+
# Offload all models
|
| 517 |
+
self.maybe_free_model_hooks()
|
| 518 |
+
|
| 519 |
+
if not return_dict:
|
| 520 |
+
return (video,)
|
| 521 |
+
|
| 522 |
+
return CogVideoXPipelineOutput(
|
| 523 |
+
frames=video,
|
| 524 |
+
)
|
pipelines/svd_pipeline.py
ADDED
|
@@ -0,0 +1,624 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Noam Rotstein
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
#
|
| 8 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 11 |
+
# See the License for the specific language governing permissions and
|
| 12 |
+
# limitations under the License.
|
| 13 |
+
#
|
| 14 |
+
# Adapted from Hugging Face Diffusers (Apache-2.0):
|
| 15 |
+
# https://github.com/huggingface/diffusers/blob/8abc7aeb715c0149ee0a9982b2d608ce97f55215/src/diffusers/pipelines/stable_video_diffusion/pipeline_stable_video_diffusion.py#L147
|
| 16 |
+
|
| 17 |
+
try:
|
| 18 |
+
import inspect
|
| 19 |
+
from dataclasses import dataclass
|
| 20 |
+
from typing import Callable, Dict, List, Optional, Union
|
| 21 |
+
import numpy as np
|
| 22 |
+
import PIL.Image
|
| 23 |
+
import torch
|
| 24 |
+
from transformers import CLIPImageProcessor, CLIPVisionModelWithProjection
|
| 25 |
+
from diffusers.models import AutoencoderKLTemporalDecoder, UNetSpatioTemporalConditionModel
|
| 26 |
+
from diffusers.schedulers import EulerDiscreteScheduler
|
| 27 |
+
from diffusers.utils import BaseOutput, is_torch_xla_available, logging, replace_example_docstring
|
| 28 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 29 |
+
from diffusers.video_processor import VideoProcessor
|
| 30 |
+
import torch.nn.functional as F
|
| 31 |
+
from diffusers.pipelines.stable_video_diffusion import StableVideoDiffusionPipeline
|
| 32 |
+
from pipelines.utils import load_video_to_tensor
|
| 33 |
+
|
| 34 |
+
except ImportError as e:
|
| 35 |
+
raise ImportError(f"Required module not found: {e}. Please install it before running this script. "
|
| 36 |
+
f"For installation instructions, see:https://github.com/Stability-AI/generative-models")
|
| 37 |
+
|
| 38 |
+
if is_torch_xla_available():
|
| 39 |
+
import torch_xla.core.xla_model as xm
|
| 40 |
+
|
| 41 |
+
XLA_AVAILABLE = True
|
| 42 |
+
else:
|
| 43 |
+
XLA_AVAILABLE = False
|
| 44 |
+
|
| 45 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
EXAMPLE_DOC_STRING = """
|
| 49 |
+
"""
|
| 50 |
+
|
| 51 |
+
|
| 52 |
+
def _append_dims(x, target_dims):
|
| 53 |
+
"""Appends dimensions to the end of a tensor until it has target_dims dimensions."""
|
| 54 |
+
dims_to_append = target_dims - x.ndim
|
| 55 |
+
if dims_to_append < 0:
|
| 56 |
+
raise ValueError(f"input has {x.ndim} dims but target_dims is {target_dims}, which is less")
|
| 57 |
+
return x[(...,) + (None,) * dims_to_append]
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps
|
| 61 |
+
def retrieve_timesteps(
|
| 62 |
+
scheduler,
|
| 63 |
+
num_inference_steps: Optional[int] = None,
|
| 64 |
+
device: Optional[Union[str, torch.device]] = None,
|
| 65 |
+
timesteps: Optional[List[int]] = None,
|
| 66 |
+
sigmas: Optional[List[float]] = None,
|
| 67 |
+
**kwargs,
|
| 68 |
+
):
|
| 69 |
+
r"""
|
| 70 |
+
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles
|
| 71 |
+
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.
|
| 72 |
+
|
| 73 |
+
Args:
|
| 74 |
+
scheduler (`SchedulerMixin`):
|
| 75 |
+
The scheduler to get timesteps from.
|
| 76 |
+
num_inference_steps (`int`):
|
| 77 |
+
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`
|
| 78 |
+
must be `None`.
|
| 79 |
+
device (`str` or `torch.device`, *optional*):
|
| 80 |
+
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.
|
| 81 |
+
timesteps (`List[int]`, *optional*):
|
| 82 |
+
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,
|
| 83 |
+
`num_inference_steps` and `sigmas` must be `None`.
|
| 84 |
+
sigmas (`List[float]`, *optional*):
|
| 85 |
+
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,
|
| 86 |
+
`num_inference_steps` and `timesteps` must be `None`.
|
| 87 |
+
|
| 88 |
+
Returns:
|
| 89 |
+
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the
|
| 90 |
+
second element is the number of inference steps.
|
| 91 |
+
"""
|
| 92 |
+
if timesteps is not None and sigmas is not None:
|
| 93 |
+
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
|
| 94 |
+
if timesteps is not None:
|
| 95 |
+
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 96 |
+
if not accepts_timesteps:
|
| 97 |
+
raise ValueError(
|
| 98 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 99 |
+
f" timestep schedules. Please check whether you are using the correct scheduler."
|
| 100 |
+
)
|
| 101 |
+
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
|
| 102 |
+
timesteps = scheduler.timesteps
|
| 103 |
+
num_inference_steps = len(timesteps)
|
| 104 |
+
elif sigmas is not None:
|
| 105 |
+
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
|
| 106 |
+
if not accept_sigmas:
|
| 107 |
+
raise ValueError(
|
| 108 |
+
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
|
| 109 |
+
f" sigmas schedules. Please check whether you are using the correct scheduler."
|
| 110 |
+
)
|
| 111 |
+
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
|
| 112 |
+
timesteps = scheduler.timesteps
|
| 113 |
+
num_inference_steps = len(timesteps)
|
| 114 |
+
else:
|
| 115 |
+
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
|
| 116 |
+
timesteps = scheduler.timesteps
|
| 117 |
+
return timesteps, num_inference_steps
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
@dataclass
|
| 121 |
+
class StableVideoDiffusionPipelineOutput(BaseOutput):
|
| 122 |
+
r"""
|
| 123 |
+
Output class for Stable Video Diffusion pipeline.
|
| 124 |
+
|
| 125 |
+
Args:
|
| 126 |
+
frames (`[List[List[PIL.Image.Image]]`, `np.ndarray`, `torch.Tensor`]):
|
| 127 |
+
List of denoised PIL images of length `batch_size` or numpy array or torch tensor of shape `(batch_size,
|
| 128 |
+
num_frames, height, width, num_channels)`.
|
| 129 |
+
"""
|
| 130 |
+
|
| 131 |
+
frames: Union[List[List[PIL.Image.Image]], np.ndarray, torch.Tensor]
|
| 132 |
+
|
| 133 |
+
|
| 134 |
+
class StableVideoDiffusionTTMPipeline(StableVideoDiffusionPipeline):
|
| 135 |
+
r"""
|
| 136 |
+
Pipeline to generate video from an input image using Stable Video Diffusion combined with Time to Move (TTM).
|
| 137 |
+
This model inherits from [`StableVideoDiffusionPipeline`].
|
| 138 |
+
"""
|
| 139 |
+
|
| 140 |
+
model_cpu_offload_seq = "image_encoder->unet->vae"
|
| 141 |
+
_callback_tensor_inputs = ["latents"]
|
| 142 |
+
|
| 143 |
+
def __init__(
|
| 144 |
+
self,
|
| 145 |
+
vae: AutoencoderKLTemporalDecoder,
|
| 146 |
+
image_encoder: CLIPVisionModelWithProjection,
|
| 147 |
+
unet: UNetSpatioTemporalConditionModel,
|
| 148 |
+
scheduler: EulerDiscreteScheduler,
|
| 149 |
+
feature_extractor: CLIPImageProcessor,
|
| 150 |
+
):
|
| 151 |
+
super().__init__(
|
| 152 |
+
vae=vae,
|
| 153 |
+
image_encoder=image_encoder,
|
| 154 |
+
unet=unet,
|
| 155 |
+
scheduler=scheduler,
|
| 156 |
+
feature_extractor=feature_extractor,
|
| 157 |
+
)
|
| 158 |
+
|
| 159 |
+
self.register_modules(
|
| 160 |
+
vae=vae,
|
| 161 |
+
image_encoder=image_encoder,
|
| 162 |
+
unet=unet,
|
| 163 |
+
scheduler=scheduler,
|
| 164 |
+
feature_extractor=feature_extractor,
|
| 165 |
+
)
|
| 166 |
+
self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
|
| 167 |
+
self.video_processor = VideoProcessor(do_resize=True, vae_scale_factor=self.vae_scale_factor)
|
| 168 |
+
|
| 169 |
+
|
| 170 |
+
def encode_frames(self, frames: torch.Tensor, num_frames: int, encode_chunk_size: int = 14):
|
| 171 |
+
"""
|
| 172 |
+
Args:
|
| 173 |
+
frames: [B, C, T, H, W] tensor, preprocessed to VAE's expected range (e.g., [-1, 1]).
|
| 174 |
+
num_frames: T (used for reshaping back).
|
| 175 |
+
encode_chunk_size: process at most this many frames at a time to avoid OOM.
|
| 176 |
+
|
| 177 |
+
Returns:
|
| 178 |
+
latents: [B, T, C_latent, h, w], multiplied by self.vae.config.scaling_factor.
|
| 179 |
+
|
| 180 |
+
Notes:
|
| 181 |
+
- Stochastic: samples from posterior (latent_dist.sample()).
|
| 182 |
+
- If the VAE's compiled module hides the signature, we inspect the original .forward
|
| 183 |
+
and pass num_frames only if it's accepted (same pattern as decode).
|
| 184 |
+
"""
|
| 185 |
+
if frames.dim() != 5:
|
| 186 |
+
raise ValueError(f"Expected frames with shape [B, C, T, H, W], got {list(frames.shape)}")
|
| 187 |
+
B, C, T, H, W = frames.shape
|
| 188 |
+
|
| 189 |
+
# [B, C, T, H, W] -> [B, T, C, H, W] -> [B*T, C, H, W]
|
| 190 |
+
frames_bt = frames.permute(0, 2, 1, 3, 4).reshape(-1, C, H, W)
|
| 191 |
+
|
| 192 |
+
# Use the *encode* signature (decoder may accept num_frames, encoder usually doesn't)
|
| 193 |
+
encode_fn = self.vae._orig_mod.encode if hasattr(self.vae, "_orig_mod") else self.vae.encode
|
| 194 |
+
try:
|
| 195 |
+
accepts_num_frames = ("num_frames" in inspect.signature(encode_fn).parameters)
|
| 196 |
+
except (TypeError, ValueError):
|
| 197 |
+
# Signature might be obscured by wrappers/compilation; be conservative
|
| 198 |
+
accepts_num_frames = False
|
| 199 |
+
|
| 200 |
+
latents_chunks = []
|
| 201 |
+
for i in range(0, frames_bt.shape[0], encode_chunk_size):
|
| 202 |
+
chunk = frames_bt[i : i + encode_chunk_size]
|
| 203 |
+
|
| 204 |
+
# match VAE device/dtype to avoid implicit casts
|
| 205 |
+
chunk = chunk.to(device=self.vae.device, dtype=self.vae.dtype)
|
| 206 |
+
|
| 207 |
+
encode_kwargs = {}
|
| 208 |
+
if accepts_num_frames:
|
| 209 |
+
# This will normally be False for AutoencoderKLTemporalDecoder.encode()
|
| 210 |
+
encode_kwargs["num_frames"] = chunk.shape[0]
|
| 211 |
+
|
| 212 |
+
# Be robust to unexpected wrappers hiding the signature
|
| 213 |
+
try:
|
| 214 |
+
enc_out = self.vae.encode(chunk, **encode_kwargs)
|
| 215 |
+
except TypeError as e:
|
| 216 |
+
if "unexpected keyword argument 'num_frames'" in str(e):
|
| 217 |
+
enc_out = self.vae.encode(chunk)
|
| 218 |
+
else:
|
| 219 |
+
raise
|
| 220 |
+
|
| 221 |
+
posterior = enc_out.latent_dist # DiagonalGaussianDistribution
|
| 222 |
+
latents_chunks.append(posterior.sample())
|
| 223 |
+
|
| 224 |
+
latents = torch.cat(latents_chunks, dim=0) # [B*T, C_lat, h, w]
|
| 225 |
+
latents = latents * self.vae.config.scaling_factor
|
| 226 |
+
|
| 227 |
+
# [B*T, C_lat, h, w] -> [B, T, C_lat, h, w]
|
| 228 |
+
latents = latents.reshape(B, num_frames, *latents.shape[1:])
|
| 229 |
+
|
| 230 |
+
return latents
|
| 231 |
+
|
| 232 |
+
def convert_rgb_mask_to_latent_mask(self, mask: torch.Tensor, first_different=True) -> torch.Tensor:
|
| 233 |
+
"""
|
| 234 |
+
Args:
|
| 235 |
+
mask: [T, 1, H, W] tensor (0/1 or any float in [0,1]).
|
| 236 |
+
Returns:
|
| 237 |
+
latent_mask: [1, T_latent, 1, H, W], where
|
| 238 |
+
T_latent = ceil(T / self.vae_scale_factor_temporal)
|
| 239 |
+
For CogVideoX-style VAE (k=4), groups are [0], [1-4], [5-8], ..., achieved by
|
| 240 |
+
pre-padding zeros at the start before max-pooling with stride=k.
|
| 241 |
+
"""
|
| 242 |
+
T, _, H, W = mask.shape
|
| 243 |
+
|
| 244 |
+
k = self.vae_scale_factor_temporal
|
| 245 |
+
# Pre-pad zeros along time so that the first pooled window corresponds to frame 0 alone
|
| 246 |
+
if first_different:
|
| 247 |
+
num_pad = (k - (T % k)) % k
|
| 248 |
+
pad = torch.zeros((num_pad, 1, H, W), device=mask.device, dtype=mask.dtype)
|
| 249 |
+
mask = torch.cat([pad, mask], dim=0)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# [T,1,H,W] -> [1,1,T,H,W]
|
| 253 |
+
x = mask.permute(1, 0, 2, 3).unsqueeze(0)
|
| 254 |
+
if k > 1:
|
| 255 |
+
# Max-pool over time with kernel=stride=k (no spatial pooling)
|
| 256 |
+
pooled = F.max_pool3d(x, kernel_size=(k, 1, 1), stride=(k, 1, 1))
|
| 257 |
+
else:
|
| 258 |
+
pooled = x
|
| 259 |
+
|
| 260 |
+
# Up-sample spatially to match latent spatial resolution
|
| 261 |
+
s = self.vae_scale_factor_spatial
|
| 262 |
+
H_latent = pooled.shape[-2] // s
|
| 263 |
+
W_latent = pooled.shape[-1] // s
|
| 264 |
+
pooled = F.interpolate(pooled, size=(pooled.shape[2], H_latent, W_latent), mode="nearest")
|
| 265 |
+
|
| 266 |
+
# Back to [1, T_latent, 1, H, W]
|
| 267 |
+
latent_mask = pooled.permute(0, 2, 1, 3, 4)
|
| 268 |
+
|
| 269 |
+
return latent_mask
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
@torch.no_grad()
|
| 273 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 274 |
+
def __call__(
|
| 275 |
+
self,
|
| 276 |
+
image: Union[PIL.Image.Image, List[PIL.Image.Image], torch.Tensor],
|
| 277 |
+
height: int = 576,
|
| 278 |
+
width: int = 1024,
|
| 279 |
+
num_frames: Optional[int] = None,
|
| 280 |
+
num_inference_steps: int = 25,
|
| 281 |
+
sigmas: Optional[List[float]] = None,
|
| 282 |
+
min_guidance_scale: float = 1.0,
|
| 283 |
+
max_guidance_scale: float = 3.0,
|
| 284 |
+
fps: int = 7,
|
| 285 |
+
motion_bucket_id: int = 127,
|
| 286 |
+
noise_aug_strength: float = 0.02,
|
| 287 |
+
decode_chunk_size: Optional[int] = None,
|
| 288 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 289 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 290 |
+
latents: Optional[torch.Tensor] = None,
|
| 291 |
+
output_type: Optional[str] = "pil",
|
| 292 |
+
callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None,
|
| 293 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 294 |
+
return_dict: bool = True,
|
| 295 |
+
motion_signal_video_path: Optional[str] = None,
|
| 296 |
+
motion_signal_mask_path: Optional[str] = None,
|
| 297 |
+
tweak_index: int = 0,
|
| 298 |
+
tstrong_index: int = 0
|
| 299 |
+
):
|
| 300 |
+
r"""
|
| 301 |
+
The call function to the pipeline for generation.
|
| 302 |
+
|
| 303 |
+
Args:
|
| 304 |
+
image (`PIL.Image.Image` or `List[PIL.Image.Image]` or `torch.Tensor`):
|
| 305 |
+
Image(s) to guide image generation. If you provide a tensor, the expected value range is between `[0,
|
| 306 |
+
1]`.
|
| 307 |
+
height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 308 |
+
The height in pixels of the generated image.
|
| 309 |
+
width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):
|
| 310 |
+
The width in pixels of the generated image.
|
| 311 |
+
num_frames (`int`, *optional*):
|
| 312 |
+
The number of video frames to generate. Defaults to `self.unet.config.num_frames` (14 for
|
| 313 |
+
`stable-video-diffusion-img2vid` and to 25 for `stable-video-diffusion-img2vid-xt`).
|
| 314 |
+
num_inference_steps (`int`, *optional*, defaults to 25):
|
| 315 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality video at the
|
| 316 |
+
expense of slower inference. This parameter is modulated by `strength`.
|
| 317 |
+
sigmas (`List[float]`, *optional*):
|
| 318 |
+
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in
|
| 319 |
+
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed
|
| 320 |
+
will be used.
|
| 321 |
+
min_guidance_scale (`float`, *optional*, defaults to 1.0):
|
| 322 |
+
The minimum guidance scale. Used for the classifier free guidance with first frame.
|
| 323 |
+
max_guidance_scale (`float`, *optional*, defaults to 3.0):
|
| 324 |
+
The maximum guidance scale. Used for the classifier free guidance with last frame.
|
| 325 |
+
fps (`int`, *optional*, defaults to 7):
|
| 326 |
+
Frames per second. The rate at which the generated images shall be exported to a video after
|
| 327 |
+
generation. Note that Stable Diffusion Video's UNet was micro-conditioned on fps-1 during training.
|
| 328 |
+
motion_bucket_id (`int`, *optional*, defaults to 127):
|
| 329 |
+
Used for conditioning the amount of motion for the generation. The higher the number the more motion
|
| 330 |
+
will be in the video.
|
| 331 |
+
noise_aug_strength (`float`, *optional*, defaults to 0.02):
|
| 332 |
+
The amount of noise added to the init image, the higher it is the less the video will look like the
|
| 333 |
+
init image. Increase it for more motion.
|
| 334 |
+
decode_chunk_size (`int`, *optional*):
|
| 335 |
+
The number of frames to decode at a time. Higher chunk size leads to better temporal consistency at the
|
| 336 |
+
expense of more memory usage. By default, the decoder decodes all frames at once for maximal quality.
|
| 337 |
+
For lower memory usage, reduce `decode_chunk_size`.
|
| 338 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 339 |
+
The number of videos to generate per prompt.
|
| 340 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 341 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 342 |
+
generation deterministic.
|
| 343 |
+
motion_signal_video_path (`str`):
|
| 344 |
+
Path to the video file containing the motion signal to guide the motion of the generated video.
|
| 345 |
+
It should be a crude version of the reference video, with pixels with motion dragged to their target.
|
| 346 |
+
motion_signal_mask_path (`str`):
|
| 347 |
+
Path to the mask video file containing the motion mask of TTM.
|
| 348 |
+
The mask should be a binary with the conditioning motion pixels being 1 and the rest being 0.
|
| 349 |
+
tweak_index (`int`):
|
| 350 |
+
The index of the tweak, from which the denoising process starts.
|
| 351 |
+
tstrong_index (`int`):
|
| 352 |
+
The index of the tweak, from which the denoising process starts in the motion conditioned region.
|
| 353 |
+
latents (`torch.Tensor`, *optional*):
|
| 354 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for video
|
| 355 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 356 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 357 |
+
output_type (`str`, *optional*, defaults to `"pil"`):
|
| 358 |
+
The output format of the generated image. Choose between `pil`, `np` or `pt`.
|
| 359 |
+
callback_on_step_end (`Callable`, *optional*):
|
| 360 |
+
A function that is called at the end of each denoising step during inference. The function is called
|
| 361 |
+
with the following arguments:
|
| 362 |
+
`callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`.
|
| 363 |
+
`callback_kwargs` will include a list of all tensors as specified by
|
| 364 |
+
`callback_on_step_end_tensor_inputs`.
|
| 365 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 366 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 367 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 368 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 369 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 370 |
+
Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a
|
| 371 |
+
plain tuple.
|
| 372 |
+
|
| 373 |
+
Examples:
|
| 374 |
+
|
| 375 |
+
Returns:
|
| 376 |
+
[`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] or `tuple`:
|
| 377 |
+
If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableVideoDiffusionPipelineOutput`] is
|
| 378 |
+
returned, otherwise a `tuple` of (`List[List[PIL.Image.Image]]` or `np.ndarray` or `torch.Tensor`) is
|
| 379 |
+
returned.
|
| 380 |
+
"""
|
| 381 |
+
# 0. Default height and width to unet
|
| 382 |
+
height = height or self.unet.config.sample_size * self.vae_scale_factor
|
| 383 |
+
width = width or self.unet.config.sample_size * self.vae_scale_factor
|
| 384 |
+
|
| 385 |
+
num_frames = num_frames if num_frames is not None else self.unet.config.num_frames
|
| 386 |
+
decode_chunk_size = decode_chunk_size if decode_chunk_size is not None else num_frames
|
| 387 |
+
|
| 388 |
+
# 1. Check inputs. Raise error if not correct
|
| 389 |
+
self.check_inputs(image, height, width)
|
| 390 |
+
|
| 391 |
+
if motion_signal_mask_path is None:
|
| 392 |
+
raise ValueError("`motion_signal_mask_path` is required for TTM.")
|
| 393 |
+
if motion_signal_video_path is None:
|
| 394 |
+
raise ValueError("`motion_signal_video_path` is required for TTM.")
|
| 395 |
+
|
| 396 |
+
# 2. Define call parameters
|
| 397 |
+
if isinstance(image, PIL.Image.Image):
|
| 398 |
+
batch_size = 1
|
| 399 |
+
elif isinstance(image, list):
|
| 400 |
+
batch_size = len(image)
|
| 401 |
+
else:
|
| 402 |
+
batch_size = image.shape[0]
|
| 403 |
+
device = self._execution_device
|
| 404 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
| 405 |
+
# of the Imagen paper: https://huggingface.co/papers/2205.11487 . `guidance_scale = 1`
|
| 406 |
+
# corresponds to doing no classifier free guidance.
|
| 407 |
+
self._guidance_scale = max_guidance_scale
|
| 408 |
+
|
| 409 |
+
# 3. Encode input image
|
| 410 |
+
image_embeddings = self._encode_image(image, device, num_videos_per_prompt, self.do_classifier_free_guidance)
|
| 411 |
+
|
| 412 |
+
# NOTE: Stable Video Diffusion was conditioned on fps - 1, which is why it is reduced here.
|
| 413 |
+
# See: https://github.com/Stability-AI/generative-models/blob/ed0997173f98eaf8f4edf7ba5fe8f15c6b877fd3/scripts/sampling/simple_video_sample.py#L188
|
| 414 |
+
fps = fps - 1
|
| 415 |
+
|
| 416 |
+
# 4. Encode input image using VAE
|
| 417 |
+
image = self.video_processor.preprocess(image, height=height, width=width).to(device)
|
| 418 |
+
noise = randn_tensor(image.shape, generator=generator, device=device, dtype=image.dtype)
|
| 419 |
+
image = image + noise_aug_strength * noise
|
| 420 |
+
|
| 421 |
+
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast
|
| 422 |
+
if needs_upcasting:
|
| 423 |
+
self.vae.to(dtype=torch.float32)
|
| 424 |
+
|
| 425 |
+
image_latents = self._encode_vae_image(
|
| 426 |
+
image,
|
| 427 |
+
device=device,
|
| 428 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 429 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 430 |
+
)
|
| 431 |
+
image_latents = image_latents.to(image_embeddings.dtype)
|
| 432 |
+
|
| 433 |
+
# cast back to fp16 if needed
|
| 434 |
+
if needs_upcasting:
|
| 435 |
+
self.vae.to(dtype=torch.float16)
|
| 436 |
+
|
| 437 |
+
# Repeat the image latents for each frame so we can concatenate them with the noise
|
| 438 |
+
# image_latents [batch, channels, height, width] ->[batch, num_frames, channels, height, width]
|
| 439 |
+
image_latents = image_latents.unsqueeze(1).repeat(1, num_frames, 1, 1, 1)
|
| 440 |
+
|
| 441 |
+
# 5. Get Added Time IDs
|
| 442 |
+
added_time_ids = self._get_add_time_ids(
|
| 443 |
+
fps,
|
| 444 |
+
motion_bucket_id,
|
| 445 |
+
noise_aug_strength,
|
| 446 |
+
image_embeddings.dtype,
|
| 447 |
+
batch_size,
|
| 448 |
+
num_videos_per_prompt,
|
| 449 |
+
self.do_classifier_free_guidance,
|
| 450 |
+
)
|
| 451 |
+
added_time_ids = added_time_ids.to(device)
|
| 452 |
+
|
| 453 |
+
# 6. Prepare timesteps
|
| 454 |
+
timesteps, num_inference_steps = retrieve_timesteps(self.scheduler, num_inference_steps, device, None, sigmas)
|
| 455 |
+
|
| 456 |
+
# ---- Sanity checks for TTM indices (0 ≤ tstrong < tweak < num_steps) ----
|
| 457 |
+
if not (0 <= tstrong_index < num_inference_steps):
|
| 458 |
+
raise ValueError(f"tstrong_index must be in [0, {num_inference_steps-1}], got {tstrong_index}.")
|
| 459 |
+
if not (0 <= tweak_index < num_inference_steps):
|
| 460 |
+
raise ValueError(f"tweak_index must be in [0, {num_inference_steps-1}], got {tweak_index}.")
|
| 461 |
+
if not (tstrong_index > tweak_index):
|
| 462 |
+
raise ValueError(f"Require tweak_index < tstrong_index, got {tweak_index} >= {tstrong_index}.")
|
| 463 |
+
|
| 464 |
+
# 7. Prepare latent variables
|
| 465 |
+
num_channels_latents = self.unet.config.in_channels
|
| 466 |
+
latents = self.prepare_latents(
|
| 467 |
+
batch_size * num_videos_per_prompt,
|
| 468 |
+
num_frames,
|
| 469 |
+
num_channels_latents,
|
| 470 |
+
height,
|
| 471 |
+
width,
|
| 472 |
+
image_embeddings.dtype,
|
| 473 |
+
device,
|
| 474 |
+
generator,
|
| 475 |
+
latents,
|
| 476 |
+
)
|
| 477 |
+
|
| 478 |
+
# 8. Prepare guidance scale
|
| 479 |
+
guidance_scale = torch.linspace(min_guidance_scale, max_guidance_scale, num_frames).unsqueeze(0)
|
| 480 |
+
guidance_scale = guidance_scale.to(device, latents.dtype)
|
| 481 |
+
guidance_scale = guidance_scale.repeat(batch_size * num_videos_per_prompt, 1)
|
| 482 |
+
guidance_scale = _append_dims(guidance_scale, latents.ndim)
|
| 483 |
+
|
| 484 |
+
self._guidance_scale = guidance_scale
|
| 485 |
+
|
| 486 |
+
# 9. Initialize for TTM
|
| 487 |
+
ref_vid = load_video_to_tensor(motion_signal_video_path).to(device=device) # shape [1, C, T, H, W]
|
| 488 |
+
refB, refC, refT, refH, refW = ref_vid.shape
|
| 489 |
+
|
| 490 |
+
ref_vid = F.interpolate(
|
| 491 |
+
ref_vid.permute(0, 2, 1, 3, 4).reshape(refB*refT, refC, refH, refW),
|
| 492 |
+
size=(height, width), mode="bicubic", align_corners=True,
|
| 493 |
+
).reshape(refB, refT, refC, height, width).permute(0, 2, 1, 3, 4)
|
| 494 |
+
|
| 495 |
+
ref_vid = self.video_processor.normalize(ref_vid.to(dtype=self.vae.dtype)) # Normalize and convert dtype for VAE encoding
|
| 496 |
+
|
| 497 |
+
if num_frames < refT:
|
| 498 |
+
logger.warning(f"num_frames ({num_frames}) < input frames ({refT}); trimming reference video.")
|
| 499 |
+
ref_vid = ref_vid[:, :, :num_frames]
|
| 500 |
+
elif num_frames > refT:
|
| 501 |
+
raise ValueError(f"num_frames ({num_frames}) is greater than input frames ({refT}). This is not supported.")
|
| 502 |
+
|
| 503 |
+
ref_latents = self.encode_frames(ref_vid, num_frames, decode_chunk_size).detach()
|
| 504 |
+
ref_latents = ref_latents.to(dtype=latents.dtype, device=device)
|
| 505 |
+
|
| 506 |
+
if not hasattr(self, "vae_scale_factor_temporal"): # encode ref video to latents
|
| 507 |
+
if hasattr(self.vae, "scale_factor_temporal"):
|
| 508 |
+
self.vae_scale_factor_temporal = self.vae.scale_factor_temporal
|
| 509 |
+
else:
|
| 510 |
+
if ref_latents.shape[1] == num_frames:
|
| 511 |
+
self.vae_scale_factor_temporal = 1
|
| 512 |
+
else:
|
| 513 |
+
raise ValueError("Please configure the temporal scale factor of the VAE.")
|
| 514 |
+
|
| 515 |
+
self.vae_scale_factor_spatial = self.vae_scale_factor
|
| 516 |
+
|
| 517 |
+
ref_mask = load_video_to_tensor(motion_signal_mask_path).to(device=device) # shape [1, C, T, H, W]
|
| 518 |
+
|
| 519 |
+
mB, mC, mT, mH, mW = ref_mask.shape # do resizing with nearest neighbor to avoid interpolation artifacts
|
| 520 |
+
ref_mask = F.interpolate(
|
| 521 |
+
ref_mask.permute(0, 2, 1, 3, 4).reshape(mB*mT, mC, mH, mW),
|
| 522 |
+
size=(height, width), mode="nearest",
|
| 523 |
+
).reshape(mB, mT, mC, height, width).permute(0, 2, 1, 3, 4)
|
| 524 |
+
ref_mask = ref_mask[0].permute(1, 0, 2, 3).contiguous() # (1, C, T, H, W) -> (T, H, W, 1)
|
| 525 |
+
if ref_mask.shape[0] > num_frames:
|
| 526 |
+
print(f"Warning: num_frames ({num_frames}) is less than input mask frames ({mT}). Trimming to {num_frames}.")
|
| 527 |
+
ref_mask = ref_mask[:num_frames]
|
| 528 |
+
elif ref_mask.shape[0] < num_frames:
|
| 529 |
+
raise ValueError(f"num_frames ({num_frames}) is greater than input mask frames ({mT}). This is not supported.")
|
| 530 |
+
ref_mask = (ref_mask > 0.5).float().max(dim=1, keepdim=True)[0] # [T, 1, H, W]
|
| 531 |
+
motion_mask = self.convert_rgb_mask_to_latent_mask(ref_mask, False) # [1, T, 1, H, W]
|
| 532 |
+
motion_mask = motion_mask.to(dtype=latents.dtype)
|
| 533 |
+
background_mask = 1.0 - motion_mask
|
| 534 |
+
|
| 535 |
+
if tweak_index >= 0:
|
| 536 |
+
tweak = self.scheduler.timesteps[tweak_index]
|
| 537 |
+
tweak = torch.tensor([tweak], device=device)
|
| 538 |
+
fixed_noise = randn_tensor(ref_latents.shape,
|
| 539 |
+
generator=generator,
|
| 540 |
+
device=ref_latents.device,
|
| 541 |
+
dtype=ref_latents.dtype)
|
| 542 |
+
noisy_latents = self.scheduler.add_noise(ref_latents, fixed_noise, tweak)
|
| 543 |
+
latents = noisy_latents.to(dtype=latents.dtype, device=latents.device)
|
| 544 |
+
else:
|
| 545 |
+
tweak = torch.tensor(-1)
|
| 546 |
+
fixed_noise = randn_tensor(ref_latents.shape,
|
| 547 |
+
generator=generator,
|
| 548 |
+
device=ref_latents.device,
|
| 549 |
+
dtype=ref_latents.dtype)
|
| 550 |
+
tweak_index = 0
|
| 551 |
+
|
| 552 |
+
|
| 553 |
+
# 10. Denoising loop
|
| 554 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 555 |
+
self._num_timesteps = len(timesteps)
|
| 556 |
+
with self.progress_bar(total=len(timesteps) - tweak_index) as progress_bar:
|
| 557 |
+
for i, t in enumerate(timesteps[tweak_index:]):
|
| 558 |
+
# expand the latents if we are doing classifier free guidance
|
| 559 |
+
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
|
| 560 |
+
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)
|
| 561 |
+
|
| 562 |
+
# Concatenate image_latents over channels dimension
|
| 563 |
+
latent_model_input = torch.cat([latent_model_input, image_latents], dim=2)
|
| 564 |
+
|
| 565 |
+
# predict the noise residual
|
| 566 |
+
noise_pred = self.unet(
|
| 567 |
+
latent_model_input,
|
| 568 |
+
t,
|
| 569 |
+
encoder_hidden_states=image_embeddings,
|
| 570 |
+
added_time_ids=added_time_ids,
|
| 571 |
+
return_dict=False,
|
| 572 |
+
)[0]
|
| 573 |
+
|
| 574 |
+
# perform guidance
|
| 575 |
+
if self.do_classifier_free_guidance:
|
| 576 |
+
noise_pred_uncond, noise_pred_cond = noise_pred.chunk(2)
|
| 577 |
+
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_cond - noise_pred_uncond)
|
| 578 |
+
|
| 579 |
+
# compute the previous noisy sample x_t -> x_t-1
|
| 580 |
+
latents = self.scheduler.step(noise_pred, t, latents).prev_sample
|
| 581 |
+
|
| 582 |
+
# In between tweak and tstrong, replace mask with noisy reference latents
|
| 583 |
+
in_between_tweak_tstrong = (i+tweak_index) < tstrong_index
|
| 584 |
+
|
| 585 |
+
if in_between_tweak_tstrong:
|
| 586 |
+
if i+tweak_index+1 < len(timesteps):
|
| 587 |
+
prev_t = torch.tensor([timesteps[i+tweak_index+1]], device=device)
|
| 588 |
+
noisy_latents = self.scheduler.add_noise(ref_latents, fixed_noise, prev_t).to(dtype=latents.dtype, device=latents.device)
|
| 589 |
+
latents = latents * background_mask + noisy_latents * motion_mask
|
| 590 |
+
elif i+tweak_index+1 == len(timesteps):
|
| 591 |
+
latents = latents * background_mask + ref_latents * motion_mask
|
| 592 |
+
else:
|
| 593 |
+
raise ValueError(f"Unexpected timestep index {i+tweak_index+1} >= {len(timesteps)}")
|
| 594 |
+
|
| 595 |
+
if callback_on_step_end is not None:
|
| 596 |
+
callback_kwargs = {}
|
| 597 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 598 |
+
callback_kwargs[k] = locals()[k]
|
| 599 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 600 |
+
|
| 601 |
+
latents = callback_outputs.pop("latents", latents)
|
| 602 |
+
|
| 603 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 604 |
+
progress_bar.update()
|
| 605 |
+
|
| 606 |
+
if XLA_AVAILABLE:
|
| 607 |
+
xm.mark_step()
|
| 608 |
+
|
| 609 |
+
if not output_type == "latent":
|
| 610 |
+
# cast back to fp16 if needed
|
| 611 |
+
if needs_upcasting:
|
| 612 |
+
self.vae.to(dtype=torch.float16)
|
| 613 |
+
frames = self.decode_latents(latents, num_frames, decode_chunk_size)
|
| 614 |
+
frames = self.video_processor.postprocess_video(video=frames, output_type=output_type)
|
| 615 |
+
else:
|
| 616 |
+
frames = latents
|
| 617 |
+
|
| 618 |
+
self.maybe_free_model_hooks()
|
| 619 |
+
|
| 620 |
+
if not return_dict:
|
| 621 |
+
return frames
|
| 622 |
+
|
| 623 |
+
return StableVideoDiffusionPipelineOutput(
|
| 624 |
+
frames=frames)
|
pipelines/utils.py
ADDED
|
@@ -0,0 +1,45 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import logging
|
| 2 |
+
import os
|
| 3 |
+
from pathlib import Path
|
| 4 |
+
from typing import Tuple
|
| 5 |
+
import numpy as np
|
| 6 |
+
import cv2
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
def validate_inputs(image_path: str, mask_path: str, motion_path: str) -> None:
|
| 10 |
+
for p in [image_path, mask_path, motion_path]:
|
| 11 |
+
if not Path(p).exists():
|
| 12 |
+
raise FileNotFoundError(f"Required file not found: {p}")
|
| 13 |
+
|
| 14 |
+
def compute_hw_from_area(
|
| 15 |
+
image_height: int,
|
| 16 |
+
image_width: int,
|
| 17 |
+
max_area: int,
|
| 18 |
+
mod_value: int,
|
| 19 |
+
) -> Tuple[int, int]:
|
| 20 |
+
"""Compute (height, width) with same math and rounding as original."""
|
| 21 |
+
aspect_ratio = image_height / image_width
|
| 22 |
+
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
|
| 23 |
+
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
|
| 24 |
+
return int(height), int(width)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
def load_video_to_tensor(video_path):
|
| 28 |
+
"""Returns a video tensor from a video file. shape [1, T, C, H, W], [0, 1] range."""
|
| 29 |
+
# load video
|
| 30 |
+
cap = cv2.VideoCapture(video_path)
|
| 31 |
+
frames = []
|
| 32 |
+
while 1:
|
| 33 |
+
ret, frame = cap.read()
|
| 34 |
+
if not ret:
|
| 35 |
+
break
|
| 36 |
+
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 37 |
+
frames.append(frame)
|
| 38 |
+
cap.release()
|
| 39 |
+
# Convert frames to tensor, shape [T, H, W, C], [0, 1] range
|
| 40 |
+
frames = np.array(frames)
|
| 41 |
+
|
| 42 |
+
video_tensor = torch.tensor(frames)
|
| 43 |
+
video_tensor = video_tensor.permute(0, 3, 1, 2).float() / 255.0
|
| 44 |
+
video_tensor = video_tensor.unsqueeze(0).permute(0, 2, 1, 3, 4)
|
| 45 |
+
return video_tensor
|
pipelines/wan_pipeline.py
ADDED
|
@@ -0,0 +1,559 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Copyright 2025 Noam Rotstein
|
| 2 |
+
#
|
| 3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 4 |
+
# you may not use this file except in compliance with the License.
|
| 5 |
+
# You may obtain a copy of the License at
|
| 6 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 7 |
+
#
|
| 8 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 9 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 10 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 11 |
+
# See the License for the specific language governing permissions and
|
| 12 |
+
# limitations under the License.
|
| 13 |
+
#
|
| 14 |
+
# Adapted from Hugging Face Diffusers (Apache-2.0):
|
| 15 |
+
# https://github.com/huggingface/diffusers/blob/main/src/diffusers/pipelines/wan/pipeline_wan_i2v.py
|
| 16 |
+
|
| 17 |
+
|
| 18 |
+
try:
|
| 19 |
+
import html
|
| 20 |
+
from typing import Any, Callable, Dict, List, Optional, Union
|
| 21 |
+
import torch
|
| 22 |
+
from transformers import AutoTokenizer, CLIPImageProcessor, CLIPVisionModel, UMT5EncoderModel
|
| 23 |
+
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
|
| 24 |
+
from diffusers.image_processor import PipelineImageInput
|
| 25 |
+
from diffusers.models import AutoencoderKLWan, WanTransformer3DModel
|
| 26 |
+
from diffusers.schedulers import FlowMatchEulerDiscreteScheduler
|
| 27 |
+
from diffusers.utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
|
| 28 |
+
from diffusers.utils.torch_utils import randn_tensor
|
| 29 |
+
from diffusers.video_processor import VideoProcessor
|
| 30 |
+
from diffusers.pipelines.wan.pipeline_output import WanPipelineOutput
|
| 31 |
+
from diffusers.pipelines.wan.pipeline_wan_i2v import retrieve_latents, WanImageToVideoPipeline
|
| 32 |
+
|
| 33 |
+
import torch.nn.functional as F
|
| 34 |
+
from pipelines.utils import load_video_to_tensor
|
| 35 |
+
|
| 36 |
+
if is_torch_xla_available():
|
| 37 |
+
import torch_xla.core.xla_model as xm
|
| 38 |
+
|
| 39 |
+
XLA_AVAILABLE = True
|
| 40 |
+
else:
|
| 41 |
+
XLA_AVAILABLE = False
|
| 42 |
+
except ImportError as e:
|
| 43 |
+
raise ImportError(f"Required module not found: {e}. Please install it before running this script. "
|
| 44 |
+
f"For installation instructions, see: https://github.com/Wan-Video/Wan2.2")
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
| 48 |
+
|
| 49 |
+
# after logger/is_ftfy_available
|
| 50 |
+
_ftfy = None
|
| 51 |
+
if is_ftfy_available():
|
| 52 |
+
import ftfy as _ftfy
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
EXAMPLE_DOC_STRING = """
|
| 56 |
+
"""
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
class WanImageToVideoTTMPipeline(WanImageToVideoPipeline):
|
| 60 |
+
r"""
|
| 61 |
+
Pipeline for image-to-video generation using Wan with Time-To-Move (TTM) conditioning.
|
| 62 |
+
This model inherits from [`WanImageToVideoPipeline`].
|
| 63 |
+
"""
|
| 64 |
+
|
| 65 |
+
model_cpu_offload_seq = "text_encoder->image_encoder->transformer->transformer_2->vae"
|
| 66 |
+
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
|
| 67 |
+
_optional_components = ["transformer", "transformer_2", "image_encoder", "image_processor"]
|
| 68 |
+
|
| 69 |
+
def __init__(
|
| 70 |
+
self,
|
| 71 |
+
tokenizer: AutoTokenizer,
|
| 72 |
+
text_encoder: UMT5EncoderModel,
|
| 73 |
+
vae: AutoencoderKLWan,
|
| 74 |
+
scheduler: FlowMatchEulerDiscreteScheduler,
|
| 75 |
+
image_processor: CLIPImageProcessor = None,
|
| 76 |
+
image_encoder: CLIPVisionModel = None,
|
| 77 |
+
transformer: WanTransformer3DModel = None,
|
| 78 |
+
transformer_2: WanTransformer3DModel = None,
|
| 79 |
+
boundary_ratio: Optional[float] = None,
|
| 80 |
+
expand_timesteps: bool = False,
|
| 81 |
+
):
|
| 82 |
+
super().__init__(
|
| 83 |
+
tokenizer=tokenizer,
|
| 84 |
+
text_encoder=text_encoder,
|
| 85 |
+
vae=vae,
|
| 86 |
+
scheduler=scheduler,
|
| 87 |
+
image_processor=image_processor,
|
| 88 |
+
image_encoder=image_encoder,
|
| 89 |
+
transformer=transformer,
|
| 90 |
+
transformer_2=transformer_2,
|
| 91 |
+
boundary_ratio=boundary_ratio,
|
| 92 |
+
expand_timesteps=expand_timesteps,
|
| 93 |
+
)
|
| 94 |
+
|
| 95 |
+
self.register_modules(
|
| 96 |
+
vae=vae,
|
| 97 |
+
text_encoder=text_encoder,
|
| 98 |
+
tokenizer=tokenizer,
|
| 99 |
+
image_encoder=image_encoder,
|
| 100 |
+
transformer=transformer,
|
| 101 |
+
scheduler=scheduler,
|
| 102 |
+
image_processor=image_processor,
|
| 103 |
+
transformer_2=transformer_2,
|
| 104 |
+
)
|
| 105 |
+
self.register_to_config(boundary_ratio=boundary_ratio, expand_timesteps=expand_timesteps)
|
| 106 |
+
|
| 107 |
+
self.vae_scale_factor_temporal = self.vae.config.scale_factor_temporal if getattr(self, "vae", None) else 4
|
| 108 |
+
self.vae_scale_factor_spatial = self.vae.config.scale_factor_spatial if getattr(self, "vae", None) else 8
|
| 109 |
+
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
|
| 110 |
+
self.image_processor = image_processor
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
def convert_rgb_mask_to_latent_mask(self, mask: torch.Tensor) -> torch.Tensor:
|
| 114 |
+
"""
|
| 115 |
+
Convert a per-frame mask [T, 1, H, W] to latent resolution [1, T_latent, 1, H', W'].
|
| 116 |
+
T_latent groups frames by the temporal VAE downsample factor k = vae_scale_factor_temporal:
|
| 117 |
+
[0], [1..k], [k+1..2k], ...
|
| 118 |
+
"""
|
| 119 |
+
|
| 120 |
+
k = self.vae_scale_factor_temporal
|
| 121 |
+
mask0 = mask[0:1] # [1,1,H,W]
|
| 122 |
+
mask1 = mask[1::k] # [T'-1,1,H,W]
|
| 123 |
+
sampled = torch.cat([mask0, mask1], dim=0) # [T',1,H,W]
|
| 124 |
+
pooled = sampled.permute(1, 0, 2, 3).unsqueeze(0)
|
| 125 |
+
|
| 126 |
+
# Up-sample spatially to match latent spatial resolution
|
| 127 |
+
spatial_downsample = self.vae_scale_factor_spatial
|
| 128 |
+
H_latent = pooled.shape[-2] // spatial_downsample
|
| 129 |
+
W_latent = pooled.shape[-1] // spatial_downsample
|
| 130 |
+
pooled = F.interpolate(pooled, size=(pooled.shape[2], H_latent, W_latent), mode="nearest")
|
| 131 |
+
|
| 132 |
+
# Back to [1, T_latent, 1, H, W]
|
| 133 |
+
latent_mask = pooled.permute(0, 2, 1, 3, 4)
|
| 134 |
+
|
| 135 |
+
return latent_mask
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
@torch.no_grad()
|
| 139 |
+
@replace_example_docstring(EXAMPLE_DOC_STRING)
|
| 140 |
+
def __call__(
|
| 141 |
+
self,
|
| 142 |
+
image: PipelineImageInput,
|
| 143 |
+
prompt: Union[str, List[str]] = None,
|
| 144 |
+
negative_prompt: Union[str, List[str]] = None,
|
| 145 |
+
height: int = 480,
|
| 146 |
+
width: int = 832,
|
| 147 |
+
num_frames: int = 81,
|
| 148 |
+
num_inference_steps: int = 50,
|
| 149 |
+
guidance_scale: float = 5.0,
|
| 150 |
+
guidance_scale_2: Optional[float] = None,
|
| 151 |
+
num_videos_per_prompt: Optional[int] = 1,
|
| 152 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
| 153 |
+
latents: Optional[torch.Tensor] = None,
|
| 154 |
+
prompt_embeds: Optional[torch.Tensor] = None,
|
| 155 |
+
negative_prompt_embeds: Optional[torch.Tensor] = None,
|
| 156 |
+
image_embeds: Optional[torch.Tensor] = None,
|
| 157 |
+
last_image: Optional[torch.Tensor] = None,
|
| 158 |
+
output_type: Optional[str] = "np",
|
| 159 |
+
return_dict: bool = True,
|
| 160 |
+
attention_kwargs: Optional[Dict[str, Any]] = None,
|
| 161 |
+
callback_on_step_end: Optional[
|
| 162 |
+
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
|
| 163 |
+
] = None,
|
| 164 |
+
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
|
| 165 |
+
max_sequence_length: int = 512,
|
| 166 |
+
motion_signal_video_path: Optional[str] = None,
|
| 167 |
+
motion_signal_mask_path: Optional[str] = None,
|
| 168 |
+
tweak_index: int = 0,
|
| 169 |
+
tstrong_index: int = 0
|
| 170 |
+
):
|
| 171 |
+
r"""
|
| 172 |
+
The call function to the pipeline for generation.
|
| 173 |
+
|
| 174 |
+
Args:
|
| 175 |
+
image (`PipelineImageInput`):
|
| 176 |
+
The input image to condition the generation on. Must be an image, a list of images or a `torch.Tensor`.
|
| 177 |
+
prompt (`str` or `List[str]`, *optional*):
|
| 178 |
+
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
|
| 179 |
+
instead.
|
| 180 |
+
negative_prompt (`str` or `List[str]`, *optional*):
|
| 181 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
| 182 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
| 183 |
+
less than `1`).
|
| 184 |
+
height (`int`, defaults to `480`):
|
| 185 |
+
The height of the generated video.
|
| 186 |
+
width (`int`, defaults to `832`):
|
| 187 |
+
The width of the generated video.
|
| 188 |
+
num_frames (`int`, defaults to `81`):
|
| 189 |
+
The number of frames in the generated video.
|
| 190 |
+
num_inference_steps (`int`, defaults to `50`):
|
| 191 |
+
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
|
| 192 |
+
expense of slower inference.
|
| 193 |
+
guidance_scale (`float`, defaults to `5.0`):
|
| 194 |
+
Guidance scale as defined in [Classifier-Free Diffusion
|
| 195 |
+
Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2.
|
| 196 |
+
of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting
|
| 197 |
+
`guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to
|
| 198 |
+
the text `prompt`, usually at the expense of lower image quality.
|
| 199 |
+
guidance_scale_2 (`float`, *optional*, defaults to `None`):
|
| 200 |
+
Guidance scale for the low-noise stage transformer (`transformer_2`). If `None` and the pipeline's
|
| 201 |
+
`boundary_ratio` is not None, uses the same value as `guidance_scale`. Only used when `transformer_2`
|
| 202 |
+
and the pipeline's `boundary_ratio` are not None.
|
| 203 |
+
num_videos_per_prompt (`int`, *optional*, defaults to 1):
|
| 204 |
+
The number of images to generate per prompt.
|
| 205 |
+
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
|
| 206 |
+
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
|
| 207 |
+
generation deterministic.
|
| 208 |
+
latents (`torch.Tensor`, *optional*):
|
| 209 |
+
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
|
| 210 |
+
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
|
| 211 |
+
tensor is generated by sampling using the supplied random `generator`.
|
| 212 |
+
prompt_embeds (`torch.Tensor`, *optional*):
|
| 213 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 214 |
+
provided, text embeddings are generated from the `prompt` input argument.
|
| 215 |
+
negative_prompt_embeds (`torch.Tensor`, *optional*):
|
| 216 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
|
| 217 |
+
provided, text embeddings are generated from the `negative_prompt` input argument.
|
| 218 |
+
image_embeds (`torch.Tensor`, *optional*):
|
| 219 |
+
Pre-generated image embeddings. Can be used to easily tweak image inputs (weighting). If not provided,
|
| 220 |
+
image embeddings are generated from the `image` input argument.
|
| 221 |
+
output_type (`str`, *optional*, defaults to `"np"`):
|
| 222 |
+
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
|
| 223 |
+
return_dict (`bool`, *optional*, defaults to `True`):
|
| 224 |
+
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
|
| 225 |
+
attention_kwargs (`dict`, *optional*):
|
| 226 |
+
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
|
| 227 |
+
`self.processor` in
|
| 228 |
+
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
|
| 229 |
+
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
|
| 230 |
+
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
|
| 231 |
+
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
|
| 232 |
+
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
|
| 233 |
+
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
|
| 234 |
+
callback_on_step_end_tensor_inputs (`List`, *optional*):
|
| 235 |
+
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
|
| 236 |
+
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
|
| 237 |
+
`._callback_tensor_inputs` attribute of your pipeline class.
|
| 238 |
+
max_sequence_length (`int`, defaults to `512`):
|
| 239 |
+
The maximum sequence length of the text encoder. If the prompt is longer than this, it will be
|
| 240 |
+
truncated. If the prompt is shorter, it will be padded to this length.
|
| 241 |
+
motion_signal_video_path (`str`):
|
| 242 |
+
Path to the video file containing the motion signal to guide the motion of the generated video.
|
| 243 |
+
It should be a crude version of the reference video, with pixels with motion dragged to their target.
|
| 244 |
+
motion_signal_mask_path (`str`):
|
| 245 |
+
Path to the mask video file containing the motion mask of TTM.
|
| 246 |
+
The mask should be a binary with the conditioning motion pixels being 1 and the rest being 0.
|
| 247 |
+
tweak_index (`int`):
|
| 248 |
+
The index of the tweak, from which the denoising process starts.
|
| 249 |
+
tstrong_index (`int`):
|
| 250 |
+
The index of the tweak, from which the denoising process starts in the motion conditioned region.
|
| 251 |
+
Examples:
|
| 252 |
+
|
| 253 |
+
Returns:
|
| 254 |
+
[`~WanPipelineOutput`] or `tuple`:
|
| 255 |
+
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
|
| 256 |
+
the first element is a list with the generated images and the second element is a list of `bool`s
|
| 257 |
+
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
|
| 258 |
+
"""
|
| 259 |
+
|
| 260 |
+
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
|
| 261 |
+
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
|
| 262 |
+
|
| 263 |
+
|
| 264 |
+
# 1. Check inputs. Raise error if not correct
|
| 265 |
+
self.check_inputs(
|
| 266 |
+
prompt,
|
| 267 |
+
negative_prompt,
|
| 268 |
+
image,
|
| 269 |
+
height,
|
| 270 |
+
width,
|
| 271 |
+
prompt_embeds,
|
| 272 |
+
negative_prompt_embeds,
|
| 273 |
+
image_embeds,
|
| 274 |
+
callback_on_step_end_tensor_inputs,
|
| 275 |
+
guidance_scale_2,
|
| 276 |
+
)
|
| 277 |
+
|
| 278 |
+
if motion_signal_video_path is None:
|
| 279 |
+
raise ValueError("`motion_signal_video_path` must be provided for TTM.")
|
| 280 |
+
if motion_signal_mask_path is None:
|
| 281 |
+
raise ValueError("`motion_signal_mask_path` must be provided for TTM.")
|
| 282 |
+
|
| 283 |
+
if num_frames % self.vae_scale_factor_temporal != 1:
|
| 284 |
+
logger.warning(
|
| 285 |
+
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
|
| 286 |
+
)
|
| 287 |
+
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
|
| 288 |
+
num_frames = max(num_frames, 1)
|
| 289 |
+
|
| 290 |
+
if self.config.boundary_ratio is not None and guidance_scale_2 is None:
|
| 291 |
+
guidance_scale_2 = guidance_scale
|
| 292 |
+
|
| 293 |
+
self._guidance_scale = guidance_scale
|
| 294 |
+
self._attention_kwargs = attention_kwargs
|
| 295 |
+
self._current_timestep = None
|
| 296 |
+
self._interrupt = False
|
| 297 |
+
|
| 298 |
+
device = self._execution_device
|
| 299 |
+
|
| 300 |
+
# 2. Define call parameters
|
| 301 |
+
if prompt is not None and isinstance(prompt, str):
|
| 302 |
+
batch_size = 1
|
| 303 |
+
elif prompt is not None and isinstance(prompt, list):
|
| 304 |
+
batch_size = len(prompt)
|
| 305 |
+
else:
|
| 306 |
+
batch_size = prompt_embeds.shape[0]
|
| 307 |
+
|
| 308 |
+
# 3. Encode input prompt
|
| 309 |
+
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
|
| 310 |
+
prompt=prompt,
|
| 311 |
+
negative_prompt=negative_prompt,
|
| 312 |
+
do_classifier_free_guidance=self.do_classifier_free_guidance,
|
| 313 |
+
num_videos_per_prompt=num_videos_per_prompt,
|
| 314 |
+
prompt_embeds=prompt_embeds,
|
| 315 |
+
negative_prompt_embeds=negative_prompt_embeds,
|
| 316 |
+
max_sequence_length=max_sequence_length,
|
| 317 |
+
device=device,
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
# Encode image embedding
|
| 321 |
+
transformer_dtype = self.transformer.dtype if self.transformer is not None else self.transformer_2.dtype
|
| 322 |
+
prompt_embeds = prompt_embeds.to(transformer_dtype)
|
| 323 |
+
if negative_prompt_embeds is not None:
|
| 324 |
+
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
|
| 325 |
+
|
| 326 |
+
# only wan 2.1 i2v transformer accepts image_embeds
|
| 327 |
+
if self.transformer is not None and self.transformer.config.image_dim is not None:
|
| 328 |
+
if image_embeds is None:
|
| 329 |
+
if last_image is None:
|
| 330 |
+
image_embeds = self.encode_image(image, device)
|
| 331 |
+
else:
|
| 332 |
+
image_embeds = self.encode_image([image, last_image], device)
|
| 333 |
+
image_embeds = image_embeds.repeat(batch_size, 1, 1)
|
| 334 |
+
image_embeds = image_embeds.to(transformer_dtype)
|
| 335 |
+
|
| 336 |
+
# 4. Prepare timesteps
|
| 337 |
+
self.scheduler.set_timesteps(num_inference_steps, device=device)
|
| 338 |
+
timesteps = self.scheduler.timesteps
|
| 339 |
+
|
| 340 |
+
tweak_index = int(tweak_index)
|
| 341 |
+
tstrong_index = int(tstrong_index)
|
| 342 |
+
|
| 343 |
+
if tweak_index < -1:
|
| 344 |
+
raise ValueError(f"`tweak_index` ({tweak_index}) must be >= -1.")
|
| 345 |
+
if tweak_index >= len(timesteps):
|
| 346 |
+
raise ValueError(f"`tweak_index` ({tweak_index}) must be < {len(timesteps)}.")
|
| 347 |
+
|
| 348 |
+
if tstrong_index < 0:
|
| 349 |
+
raise ValueError(f"`tstrong_index` ({tstrong_index}) must be >= 0.")
|
| 350 |
+
if tstrong_index >= len(timesteps):
|
| 351 |
+
raise ValueError(f"`tstrong_index` ({tstrong_index}) must be < {len(timesteps)}.")
|
| 352 |
+
if tstrong_index < max(0, tweak_index):
|
| 353 |
+
raise ValueError(f"`tstrong_index` ({tstrong_index}) must be >= `tweak_index` ({tweak_index}).")
|
| 354 |
+
|
| 355 |
+
# 5. Prepare latent variables
|
| 356 |
+
num_channels_latents = self.vae.config.z_dim
|
| 357 |
+
image = self.video_processor.preprocess(image, height=height, width=width).to(device, dtype=torch.float32)
|
| 358 |
+
if last_image is not None:
|
| 359 |
+
last_image = self.video_processor.preprocess(last_image, height=height, width=width).to(
|
| 360 |
+
device, dtype=torch.float32
|
| 361 |
+
)
|
| 362 |
+
|
| 363 |
+
latents_outputs = self.prepare_latents(
|
| 364 |
+
image,
|
| 365 |
+
batch_size * num_videos_per_prompt,
|
| 366 |
+
num_channels_latents,
|
| 367 |
+
height,
|
| 368 |
+
width,
|
| 369 |
+
num_frames,
|
| 370 |
+
torch.float32,
|
| 371 |
+
device,
|
| 372 |
+
generator,
|
| 373 |
+
latents,
|
| 374 |
+
last_image,
|
| 375 |
+
)
|
| 376 |
+
if self.config.expand_timesteps:
|
| 377 |
+
latents, condition, first_frame_mask = latents_outputs
|
| 378 |
+
else:
|
| 379 |
+
latents, condition = latents_outputs
|
| 380 |
+
|
| 381 |
+
# 6. Initialize for TTM
|
| 382 |
+
ref_vid = load_video_to_tensor(motion_signal_video_path).to(device=device) # shape [1, C, T, H, W]
|
| 383 |
+
refB, refC, refT, refH, refW = ref_vid.shape
|
| 384 |
+
|
| 385 |
+
ref_vid = F.interpolate(
|
| 386 |
+
ref_vid.permute(0, 2, 1, 3, 4).reshape(refB*refT, refC, refH, refW),
|
| 387 |
+
size=(height, width), mode="bicubic", align_corners=True,
|
| 388 |
+
).reshape(refB, refT, refC, height, width).permute(0, 2, 1, 3, 4)
|
| 389 |
+
|
| 390 |
+
ref_vid = self.video_processor.normalize(ref_vid.to(dtype=self.vae.dtype)) # [1, C, T, H, W]
|
| 391 |
+
ref_latents = retrieve_latents(self.vae.encode(ref_vid), sample_mode="argmax") # [1, z, T', H', W']
|
| 392 |
+
latents_mean = torch.tensor(self.vae.config.latents_mean)\
|
| 393 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1).to(ref_latents.device, ref_latents.dtype)
|
| 394 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std)\
|
| 395 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1).to(ref_latents.device, ref_latents.dtype)
|
| 396 |
+
ref_latents = (ref_latents - latents_mean) * latents_std
|
| 397 |
+
|
| 398 |
+
|
| 399 |
+
ref_mask = load_video_to_tensor(motion_signal_mask_path).to(device=device) # shape [1, C, T, H, W]
|
| 400 |
+
mB, mC, mT, mH, mW = ref_mask.shape
|
| 401 |
+
ref_mask = F.interpolate(
|
| 402 |
+
ref_mask.permute(0, 2, 1, 3, 4).reshape(mB*mT, mC, mH, mW),
|
| 403 |
+
size=(height, width), mode="nearest",
|
| 404 |
+
).reshape(mB, mT, mC, height, width).permute(0, 2, 1, 3, 4) # [1, C, T, H, W] -> [T, C, H, W]
|
| 405 |
+
mask_tc_hw = ref_mask[0].permute(1, 0, 2, 3).contiguous()
|
| 406 |
+
|
| 407 |
+
if mask_tc_hw.shape[0] > num_frames: # Align time dimension to num_frames
|
| 408 |
+
logger.warning("Mask has %d frames but num_frames=%d; trimming.", mask_tc_hw.shape[0], num_frames)
|
| 409 |
+
mask_tc_hw = mask_tc_hw[:num_frames]
|
| 410 |
+
elif mask_tc_hw.shape[0] < num_frames:
|
| 411 |
+
raise ValueError(f"num_frames ({num_frames}) is greater than mask frames ({mask_tc_hw.shape[0]}). "
|
| 412 |
+
"Please pad/extend your mask or lower num_frames.")
|
| 413 |
+
|
| 414 |
+
if mask_tc_hw.shape[1] > 1: # Reduce channels if needed -> [T,1,H,W], binarize once
|
| 415 |
+
mask_t1_hw = (mask_tc_hw > 0.5).any(dim=1, keepdim=True).float()
|
| 416 |
+
else:
|
| 417 |
+
mask_t1_hw = (mask_tc_hw > 0.5).float()
|
| 418 |
+
|
| 419 |
+
motion_mask = self.convert_rgb_mask_to_latent_mask(mask_t1_hw).permute(0, 2, 1, 3, 4).contiguous()
|
| 420 |
+
background_mask = 1.0 - motion_mask
|
| 421 |
+
|
| 422 |
+
if tweak_index >= 0:
|
| 423 |
+
tweak = timesteps[tweak_index]
|
| 424 |
+
fixed_noise = randn_tensor(
|
| 425 |
+
ref_latents.shape,
|
| 426 |
+
generator=generator,
|
| 427 |
+
device=ref_latents.device,
|
| 428 |
+
dtype=ref_latents.dtype,
|
| 429 |
+
)
|
| 430 |
+
tweak = torch.as_tensor(tweak, device=ref_latents.device, dtype=torch.long).view(1)
|
| 431 |
+
noisy_latents = self.scheduler.add_noise(ref_latents, fixed_noise, tweak.long())
|
| 432 |
+
latents = noisy_latents.to(dtype=latents.dtype, device=latents.device)
|
| 433 |
+
else:
|
| 434 |
+
tweak = torch.tensor(-1)
|
| 435 |
+
fixed_noise = randn_tensor(
|
| 436 |
+
ref_latents.shape,
|
| 437 |
+
generator=generator,
|
| 438 |
+
device=ref_latents.device,
|
| 439 |
+
dtype=ref_latents.dtype,
|
| 440 |
+
)
|
| 441 |
+
tweak_index = 0
|
| 442 |
+
|
| 443 |
+
# 7. Denoising loop
|
| 444 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
|
| 445 |
+
self._num_timesteps = len(timesteps)
|
| 446 |
+
|
| 447 |
+
if self.config.boundary_ratio is not None:
|
| 448 |
+
boundary_timestep = self.config.boundary_ratio * self.scheduler.config.num_train_timesteps
|
| 449 |
+
else:
|
| 450 |
+
boundary_timestep = None
|
| 451 |
+
|
| 452 |
+
with self.progress_bar(total=len(timesteps) - tweak_index) as progress_bar:
|
| 453 |
+
for i, t in enumerate(timesteps[tweak_index:]):
|
| 454 |
+
if self.interrupt:
|
| 455 |
+
continue
|
| 456 |
+
|
| 457 |
+
self._current_timestep = t
|
| 458 |
+
|
| 459 |
+
if boundary_timestep is None or t >= boundary_timestep:
|
| 460 |
+
# wan2.1 or high-noise stage in wan2.2
|
| 461 |
+
current_model = self.transformer
|
| 462 |
+
current_guidance_scale = guidance_scale
|
| 463 |
+
else:
|
| 464 |
+
# low-noise stage in wan2.2
|
| 465 |
+
current_model = self.transformer_2
|
| 466 |
+
current_guidance_scale = guidance_scale_2
|
| 467 |
+
|
| 468 |
+
if self.config.expand_timesteps:
|
| 469 |
+
latent_model_input = (1 - first_frame_mask) * condition + first_frame_mask * latents
|
| 470 |
+
latent_model_input = latent_model_input.to(transformer_dtype)
|
| 471 |
+
|
| 472 |
+
temp_ts = (first_frame_mask[0][0][:, ::2, ::2] * t).flatten()
|
| 473 |
+
timestep = temp_ts.unsqueeze(0).expand(latents.shape[0], -1)
|
| 474 |
+
else:
|
| 475 |
+
latent_model_input = torch.cat([latents, condition], dim=1).to(transformer_dtype)
|
| 476 |
+
timestep = t.expand(latents.shape[0])
|
| 477 |
+
|
| 478 |
+
with current_model.cache_context("cond"):
|
| 479 |
+
noise_pred = current_model(
|
| 480 |
+
hidden_states=latent_model_input,
|
| 481 |
+
timestep=timestep,
|
| 482 |
+
encoder_hidden_states=prompt_embeds,
|
| 483 |
+
encoder_hidden_states_image=image_embeds,
|
| 484 |
+
attention_kwargs=attention_kwargs,
|
| 485 |
+
return_dict=False,
|
| 486 |
+
)[0]
|
| 487 |
+
|
| 488 |
+
if self.do_classifier_free_guidance:
|
| 489 |
+
with current_model.cache_context("uncond"):
|
| 490 |
+
noise_uncond = current_model(
|
| 491 |
+
hidden_states=latent_model_input,
|
| 492 |
+
timestep=timestep,
|
| 493 |
+
encoder_hidden_states=negative_prompt_embeds,
|
| 494 |
+
encoder_hidden_states_image=image_embeds,
|
| 495 |
+
attention_kwargs=attention_kwargs,
|
| 496 |
+
return_dict=False,
|
| 497 |
+
)[0]
|
| 498 |
+
noise_pred = noise_uncond + current_guidance_scale * (noise_pred - noise_uncond)
|
| 499 |
+
|
| 500 |
+
# In between tweak and tstrong, replace mask with noisy reference latents
|
| 501 |
+
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
|
| 502 |
+
in_between_tweak_tstrong = (i+tweak_index) < tstrong_index
|
| 503 |
+
|
| 504 |
+
if in_between_tweak_tstrong:
|
| 505 |
+
if i+tweak_index+1 < len(timesteps):
|
| 506 |
+
prev_t = timesteps[i+tweak_index+1]
|
| 507 |
+
prev_t = torch.as_tensor(prev_t, device=ref_latents.device, dtype=torch.long).view(1)
|
| 508 |
+
noisy_latents = self.scheduler.add_noise(ref_latents, fixed_noise, prev_t.long()).to(dtype=latents.dtype, device=latents.device)
|
| 509 |
+
latents = latents * background_mask + noisy_latents * motion_mask
|
| 510 |
+
else:
|
| 511 |
+
latents = latents * background_mask + ref_latents.to(dtype=latents.dtype, device=latents.device) * motion_mask
|
| 512 |
+
|
| 513 |
+
|
| 514 |
+
if callback_on_step_end is not None:
|
| 515 |
+
callback_kwargs = {}
|
| 516 |
+
for k in callback_on_step_end_tensor_inputs:
|
| 517 |
+
callback_kwargs[k] = locals()[k]
|
| 518 |
+
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
|
| 519 |
+
|
| 520 |
+
latents = callback_outputs.pop("latents", latents)
|
| 521 |
+
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
|
| 522 |
+
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
|
| 523 |
+
|
| 524 |
+
# call the callback, if provided
|
| 525 |
+
if i == len(timesteps) - tweak_index - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
|
| 526 |
+
progress_bar.update()
|
| 527 |
+
|
| 528 |
+
if XLA_AVAILABLE:
|
| 529 |
+
xm.mark_step()
|
| 530 |
+
|
| 531 |
+
self._current_timestep = None
|
| 532 |
+
|
| 533 |
+
if self.config.expand_timesteps:
|
| 534 |
+
latents = (1 - first_frame_mask) * condition + first_frame_mask * latents
|
| 535 |
+
|
| 536 |
+
if not output_type == "latent":
|
| 537 |
+
latents = latents.to(self.vae.dtype)
|
| 538 |
+
latents_mean = (
|
| 539 |
+
torch.tensor(self.vae.config.latents_mean)
|
| 540 |
+
.view(1, self.vae.config.z_dim, 1, 1, 1)
|
| 541 |
+
.to(latents.device, latents.dtype)
|
| 542 |
+
)
|
| 543 |
+
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
|
| 544 |
+
latents.device, latents.dtype
|
| 545 |
+
)
|
| 546 |
+
latents = latents / latents_std + latents_mean
|
| 547 |
+
video = self.vae.decode(latents, return_dict=False)[0]
|
| 548 |
+
|
| 549 |
+
video = self.video_processor.postprocess_video(video, output_type=output_type)
|
| 550 |
+
else:
|
| 551 |
+
video = latents
|
| 552 |
+
|
| 553 |
+
# Offload all models
|
| 554 |
+
self.maybe_free_model_hooks()
|
| 555 |
+
|
| 556 |
+
if not return_dict:
|
| 557 |
+
return (video,)
|
| 558 |
+
|
| 559 |
+
return WanPipelineOutput(frames=video)
|