Spaces:
Sleeping
Sleeping
Commit
·
f1199d3
1
Parent(s):
1c943af
Install error fix attemp 9
Browse files- Dockerfile +33 -16
- main.py +72 -47
- requirements.txt +18 -6
Dockerfile
CHANGED
|
@@ -1,10 +1,12 @@
|
|
| 1 |
FROM python:3.10-slim
|
| 2 |
|
|
|
|
| 3 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 4 |
git gcc g++ libglib2.0-0 libsm6 libxext6 libxrender-dev \
|
| 5 |
build-essential curl && \
|
| 6 |
rm -rf /var/lib/apt/lists/*
|
| 7 |
|
|
|
|
| 8 |
RUN useradd -m -u 1000 user
|
| 9 |
USER user
|
| 10 |
ENV PATH="/home/user/.local/bin:$PATH"
|
|
@@ -14,35 +16,50 @@ WORKDIR /app
|
|
| 14 |
# Copy requirements first for better caching
|
| 15 |
COPY --chown=user requirements.txt ./
|
| 16 |
|
| 17 |
-
# Install dependencies
|
| 18 |
RUN pip install --upgrade pip && \
|
| 19 |
-
pip install --no-cache-dir packaging ninja wheel setuptools
|
| 20 |
|
| 21 |
-
# Install
|
| 22 |
-
RUN pip install --no-cache-dir
|
| 23 |
|
| 24 |
-
# Install
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
RUN pip install --no-cache-dir \
|
| 26 |
-
transformers \
|
| 27 |
datasets \
|
| 28 |
Pillow \
|
| 29 |
accelerate \
|
| 30 |
-
scipy
|
| 31 |
-
|
|
|
|
|
|
|
| 32 |
fastapi \
|
| 33 |
"uvicorn[standard]"
|
| 34 |
|
| 35 |
-
# Install
|
| 36 |
RUN pip install --no-cache-dir \
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
|
| 42 |
# Copy all application files
|
| 43 |
COPY --chown=user . .
|
| 44 |
|
| 45 |
-
#
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 47 |
|
| 48 |
-
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
|
|
|
|
| 1 |
FROM python:3.10-slim
|
| 2 |
|
| 3 |
+
# Install system dependencies
|
| 4 |
RUN apt-get update && apt-get install -y --no-install-recommends \
|
| 5 |
git gcc g++ libglib2.0-0 libsm6 libxext6 libxrender-dev \
|
| 6 |
build-essential curl && \
|
| 7 |
rm -rf /var/lib/apt/lists/*
|
| 8 |
|
| 9 |
+
# Create user
|
| 10 |
RUN useradd -m -u 1000 user
|
| 11 |
USER user
|
| 12 |
ENV PATH="/home/user/.local/bin:$PATH"
|
|
|
|
| 16 |
# Copy requirements first for better caching
|
| 17 |
COPY --chown=user requirements.txt ./
|
| 18 |
|
| 19 |
+
# Install dependencies with proper NumPy version
|
| 20 |
RUN pip install --upgrade pip && \
|
| 21 |
+
pip install --no-cache-dir packaging ninja wheel setuptools
|
| 22 |
|
| 23 |
+
# Install NumPy 1.x to avoid compatibility issues
|
| 24 |
+
RUN pip install --no-cache-dir "numpy>=1.21.0,<2.0.0"
|
| 25 |
|
| 26 |
+
# Install PyTorch CPU version (compatible with NumPy 1.x)
|
| 27 |
+
RUN pip install --no-cache-dir torch==2.2.2+cpu torchvision==0.17.2+cpu torchaudio==2.2.2+cpu \
|
| 28 |
+
--index-url https://download.pytorch.org/whl/cpu
|
| 29 |
+
|
| 30 |
+
# Install transformers and related packages
|
| 31 |
RUN pip install --no-cache-dir \
|
| 32 |
+
"transformers>=4.37.0" \
|
| 33 |
datasets \
|
| 34 |
Pillow \
|
| 35 |
accelerate \
|
| 36 |
+
scipy
|
| 37 |
+
|
| 38 |
+
# Install FastAPI and related packages
|
| 39 |
+
RUN pip install --no-cache-dir \
|
| 40 |
fastapi \
|
| 41 |
"uvicorn[standard]"
|
| 42 |
|
| 43 |
+
# Install other dependencies (skip problematic ones)
|
| 44 |
RUN pip install --no-cache-dir \
|
| 45 |
+
opencv-python-headless
|
| 46 |
+
|
| 47 |
+
# Try to install qwen-vl-utils (if it fails, continue)
|
| 48 |
+
RUN pip install --no-cache-dir qwen-vl-utils || echo "qwen-vl-utils installation failed, continuing..."
|
| 49 |
|
| 50 |
# Copy all application files
|
| 51 |
COPY --chown=user . .
|
| 52 |
|
| 53 |
+
# Set environment variables for better compatibility
|
| 54 |
+
ENV TRANSFORMERS_CACHE=/tmp/transformers_cache
|
| 55 |
+
ENV HF_HOME=/tmp/hf_home
|
| 56 |
+
ENV PYTHONUNBUFFERED=1
|
| 57 |
+
|
| 58 |
+
# Expose port
|
| 59 |
+
EXPOSE 7860
|
| 60 |
+
|
| 61 |
+
# Health check
|
| 62 |
+
HEALTHCHECK --interval=30s --timeout=30s --start-period=60s --retries=3 \
|
| 63 |
+
CMD curl -f http://localhost:7860/health || exit 1
|
| 64 |
|
| 65 |
+
CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860", "--timeout-keep-alive", "120"]
|
main.py
CHANGED
|
@@ -1,4 +1,4 @@
|
|
| 1 |
-
from fastapi import FastAPI, Form
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from PIL import Image
|
|
@@ -6,55 +6,75 @@ from io import BytesIO
|
|
| 6 |
import base64
|
| 7 |
import torch
|
| 8 |
import re
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Initialize global variables
|
| 13 |
model = None
|
| 14 |
processor = None
|
| 15 |
tokenizer = None
|
| 16 |
model_name = "microsoft/GUI-Actor-2B-Qwen2-VL"
|
|
|
|
| 17 |
|
| 18 |
-
def load_model():
|
| 19 |
"""Load model with proper error handling"""
|
| 20 |
-
global model, processor, tokenizer
|
| 21 |
|
| 22 |
try:
|
| 23 |
-
|
| 24 |
-
# Try different approaches to load the processor
|
| 25 |
-
try:
|
| 26 |
-
from transformers import Qwen2VLProcessor
|
| 27 |
-
processor = Qwen2VLProcessor.from_pretrained(model_name)
|
| 28 |
-
print("Successfully loaded Qwen2VLProcessor")
|
| 29 |
-
except Exception as e:
|
| 30 |
-
print(f"Failed to load Qwen2VLProcessor: {e}")
|
| 31 |
-
from transformers import AutoProcessor
|
| 32 |
-
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True)
|
| 33 |
-
print("Successfully loaded AutoProcessor")
|
| 34 |
|
| 35 |
-
|
|
|
|
| 36 |
|
| 37 |
-
|
| 38 |
-
# Use
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 42 |
model_name,
|
| 43 |
-
torch_dtype=torch.float32,
|
| 44 |
-
device_map=None,
|
| 45 |
-
trust_remote_code=True,
|
| 46 |
-
|
| 47 |
).eval()
|
| 48 |
|
| 49 |
-
|
|
|
|
| 50 |
return True
|
| 51 |
|
| 52 |
except Exception as e:
|
| 53 |
-
|
|
|
|
| 54 |
return False
|
| 55 |
|
| 56 |
-
|
| 57 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 58 |
|
| 59 |
class Base64Request(BaseModel):
|
| 60 |
image_base64: str
|
|
@@ -136,6 +156,7 @@ def cpu_inference(conversation, model, tokenizer, processor):
|
|
| 136 |
}
|
| 137 |
|
| 138 |
except Exception as e:
|
|
|
|
| 139 |
return {
|
| 140 |
"topk_points": [(0.5, 0.5)],
|
| 141 |
"response": f"Error during inference: {str(e)}",
|
|
@@ -153,20 +174,26 @@ async def root():
|
|
| 153 |
@app.post("/click/base64")
|
| 154 |
async def predict_click_base64(data: Base64Request):
|
| 155 |
if not model_loaded:
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
"success": False,
|
| 160 |
-
"x": 0.5,
|
| 161 |
-
"y": 0.5
|
| 162 |
-
},
|
| 163 |
-
status_code=503
|
| 164 |
)
|
| 165 |
|
| 166 |
try:
|
| 167 |
# Decode base64 to image
|
| 168 |
-
|
| 169 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
|
| 171 |
conversation = [
|
| 172 |
{
|
|
@@ -204,21 +231,19 @@ async def predict_click_base64(data: Base64Request):
|
|
| 204 |
"success": pred["success"]
|
| 205 |
})
|
| 206 |
|
|
|
|
|
|
|
| 207 |
except Exception as e:
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
"x": 0.5,
|
| 213 |
-
"y": 0.5
|
| 214 |
-
},
|
| 215 |
-
status_code=500
|
| 216 |
)
|
| 217 |
|
| 218 |
@app.get("/health")
|
| 219 |
async def health_check():
|
| 220 |
return {
|
| 221 |
-
"status": "healthy",
|
| 222 |
"model": model_name,
|
| 223 |
"device": "cpu",
|
| 224 |
"torch_dtype": "float32",
|
|
|
|
| 1 |
+
from fastapi import FastAPI, Form, HTTPException
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from pydantic import BaseModel
|
| 4 |
from PIL import Image
|
|
|
|
| 6 |
import base64
|
| 7 |
import torch
|
| 8 |
import re
|
| 9 |
+
import logging
|
| 10 |
+
import asyncio
|
| 11 |
+
from contextlib import asynccontextmanager
|
| 12 |
|
| 13 |
+
# Configure logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
# Initialize global variables
|
| 18 |
model = None
|
| 19 |
processor = None
|
| 20 |
tokenizer = None
|
| 21 |
model_name = "microsoft/GUI-Actor-2B-Qwen2-VL"
|
| 22 |
+
model_loaded = False
|
| 23 |
|
| 24 |
+
async def load_model():
|
| 25 |
"""Load model with proper error handling"""
|
| 26 |
+
global model, processor, tokenizer, model_loaded
|
| 27 |
|
| 28 |
try:
|
| 29 |
+
logger.info("Starting model loading...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
|
| 31 |
+
# Import required modules
|
| 32 |
+
from transformers import AutoProcessor, AutoModelForCausalLM
|
| 33 |
|
| 34 |
+
logger.info("Loading processor...")
|
| 35 |
+
# Use AutoProcessor for better compatibility
|
| 36 |
+
processor = AutoProcessor.from_pretrained(
|
| 37 |
+
model_name,
|
| 38 |
+
trust_remote_code=True
|
| 39 |
+
)
|
| 40 |
+
logger.info("Processor loaded successfully")
|
| 41 |
|
| 42 |
+
tokenizer = processor.tokenizer
|
| 43 |
+
|
| 44 |
+
logger.info("Loading model...")
|
| 45 |
+
# Use AutoModelForCausalLM for better compatibility
|
| 46 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 47 |
model_name,
|
| 48 |
+
torch_dtype=torch.float32,
|
| 49 |
+
device_map=None, # CPU only
|
| 50 |
+
trust_remote_code=True,
|
| 51 |
+
low_cpu_mem_usage=True # For better memory management
|
| 52 |
).eval()
|
| 53 |
|
| 54 |
+
logger.info("Model loaded successfully!")
|
| 55 |
+
model_loaded = True
|
| 56 |
return True
|
| 57 |
|
| 58 |
except Exception as e:
|
| 59 |
+
logger.error(f"Error loading model: {e}")
|
| 60 |
+
model_loaded = False
|
| 61 |
return False
|
| 62 |
|
| 63 |
+
@asynccontextmanager
|
| 64 |
+
async def lifespan(app: FastAPI):
|
| 65 |
+
# Startup
|
| 66 |
+
logger.info("Starting up GUI-Actor API...")
|
| 67 |
+
await load_model()
|
| 68 |
+
yield
|
| 69 |
+
# Shutdown
|
| 70 |
+
logger.info("Shutting down GUI-Actor API...")
|
| 71 |
+
|
| 72 |
+
# Initialize FastAPI app with lifespan
|
| 73 |
+
app = FastAPI(
|
| 74 |
+
title="GUI-Actor API",
|
| 75 |
+
version="1.0.0",
|
| 76 |
+
lifespan=lifespan
|
| 77 |
+
)
|
| 78 |
|
| 79 |
class Base64Request(BaseModel):
|
| 80 |
image_base64: str
|
|
|
|
| 156 |
}
|
| 157 |
|
| 158 |
except Exception as e:
|
| 159 |
+
logger.error(f"Inference error: {e}")
|
| 160 |
return {
|
| 161 |
"topk_points": [(0.5, 0.5)],
|
| 162 |
"response": f"Error during inference: {str(e)}",
|
|
|
|
| 174 |
@app.post("/click/base64")
|
| 175 |
async def predict_click_base64(data: Base64Request):
|
| 176 |
if not model_loaded:
|
| 177 |
+
raise HTTPException(
|
| 178 |
+
status_code=503,
|
| 179 |
+
detail="Model not loaded properly"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 180 |
)
|
| 181 |
|
| 182 |
try:
|
| 183 |
# Decode base64 to image
|
| 184 |
+
try:
|
| 185 |
+
# Handle data URL format
|
| 186 |
+
if "," in data.image_base64:
|
| 187 |
+
image_data = base64.b64decode(data.image_base64.split(",")[-1])
|
| 188 |
+
else:
|
| 189 |
+
image_data = base64.b64decode(data.image_base64)
|
| 190 |
+
except Exception as e:
|
| 191 |
+
raise HTTPException(status_code=400, detail=f"Invalid base64 image: {e}")
|
| 192 |
+
|
| 193 |
+
try:
|
| 194 |
+
pil_image = Image.open(BytesIO(image_data)).convert("RGB")
|
| 195 |
+
except Exception as e:
|
| 196 |
+
raise HTTPException(status_code=400, detail=f"Invalid image format: {e}")
|
| 197 |
|
| 198 |
conversation = [
|
| 199 |
{
|
|
|
|
| 231 |
"success": pred["success"]
|
| 232 |
})
|
| 233 |
|
| 234 |
+
except HTTPException:
|
| 235 |
+
raise
|
| 236 |
except Exception as e:
|
| 237 |
+
logger.error(f"Prediction error: {e}")
|
| 238 |
+
raise HTTPException(
|
| 239 |
+
status_code=500,
|
| 240 |
+
detail=f"Internal server error: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 241 |
)
|
| 242 |
|
| 243 |
@app.get("/health")
|
| 244 |
async def health_check():
|
| 245 |
return {
|
| 246 |
+
"status": "healthy" if model_loaded else "unhealthy",
|
| 247 |
"model": model_name,
|
| 248 |
"device": "cpu",
|
| 249 |
"torch_dtype": "float32",
|
requirements.txt
CHANGED
|
@@ -1,16 +1,28 @@
|
|
|
|
|
| 1 |
packaging
|
| 2 |
ninja
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
fastapi
|
| 4 |
uvicorn[standard]
|
|
|
|
|
|
|
| 5 |
transformers>=4.37.0
|
| 6 |
datasets
|
| 7 |
Pillow
|
| 8 |
-
# Fix NumPy compatibility issue
|
| 9 |
-
numpy<2.0.0
|
| 10 |
-
torch==2.2.2+cpu
|
| 11 |
-
torchvision
|
| 12 |
-
torchaudio
|
| 13 |
-
--index-url https://download.pytorch.org/whl/cpu
|
| 14 |
accelerate
|
| 15 |
scipy
|
|
|
|
|
|
|
|
|
|
| 16 |
qwen-vl-utils
|
|
|
|
| 1 |
+
# Core dependencies
|
| 2 |
packaging
|
| 3 |
ninja
|
| 4 |
+
wheel
|
| 5 |
+
setuptools
|
| 6 |
+
|
| 7 |
+
# NumPy version that's compatible with PyTorch and transformers
|
| 8 |
+
numpy>=1.21.0,<2.0.0
|
| 9 |
+
|
| 10 |
+
# PyTorch CPU version (will be installed via Dockerfile)
|
| 11 |
+
# torch==2.2.2+cpu
|
| 12 |
+
# torchvision==0.17.2+cpu
|
| 13 |
+
# torchaudio==2.2.2+cpu
|
| 14 |
+
|
| 15 |
+
# FastAPI and related
|
| 16 |
fastapi
|
| 17 |
uvicorn[standard]
|
| 18 |
+
|
| 19 |
+
# Transformers and ML dependencies
|
| 20 |
transformers>=4.37.0
|
| 21 |
datasets
|
| 22 |
Pillow
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
accelerate
|
| 24 |
scipy
|
| 25 |
+
|
| 26 |
+
# Optional dependencies (install if available)
|
| 27 |
+
opencv-python-headless
|
| 28 |
qwen-vl-utils
|