Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,57 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
|
| 5 |
+
import gradio as gr
|
| 6 |
+
|
| 7 |
+
# 1. تهيئة تطبيق FastAPI
|
| 8 |
+
app = FastAPI()
|
| 9 |
+
|
| 10 |
+
# 2. تحميل النموذج مرة واحدة عند التشغيل
|
| 11 |
+
MODEL_NAME = "aubmindlab/aragpt2-base" # نموذج مخصص للعربية
|
| 12 |
+
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
|
| 13 |
+
model = AutoModelForCausalLM.from_pretrained(MODEL_NAME)
|
| 14 |
+
|
| 15 |
+
# 3. تعريف دالة التوليد
|
| 16 |
+
def generate_text(prompt: str, max_length=200):
|
| 17 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
| 18 |
+
outputs = model.generate(
|
| 19 |
+
inputs,
|
| 20 |
+
max_length=max_length,
|
| 21 |
+
do_sample=True,
|
| 22 |
+
top_k=50,
|
| 23 |
+
top_p=0.95,
|
| 24 |
+
temperature=0.7,
|
| 25 |
+
pad_token_id=tokenizer.eos_token_id
|
| 26 |
+
)
|
| 27 |
+
return tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 28 |
+
|
| 29 |
+
# 4. واجهة API باستخدام FastAPI
|
| 30 |
+
class Request(BaseModel):
|
| 31 |
+
text: str
|
| 32 |
+
max_length: int = 200
|
| 33 |
+
|
| 34 |
+
@app.post("/generate")
|
| 35 |
+
async def api_generate(request: Request):
|
| 36 |
+
result = generate_text(request.text, request.max_length)
|
| 37 |
+
return {"generated_text": result}
|
| 38 |
+
|
| 39 |
+
# 5. واجهة المستخدم باستخدام Gradio
|
| 40 |
+
def gradio_interface(prompt):
|
| 41 |
+
return generate_text(prompt)
|
| 42 |
+
|
| 43 |
+
ui = gr.Interface(
|
| 44 |
+
fn=gradio_interface,
|
| 45 |
+
inputs=gr.Textbox(lines=3, placeholder="اكتب سؤالك هنا...", label="المدخلات"),
|
| 46 |
+
outputs=gr.Textbox(label="الإجابة"),
|
| 47 |
+
title="نموذج ذكاء اصطناعي للغة العربية",
|
| 48 |
+
description="نموذج توليد نصوص بالعربية مع واجهة API"
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
# 6. دمج الواجهات
|
| 52 |
+
app = gr.mount_gradio_app(app, ui, path="/ui")
|
| 53 |
+
|
| 54 |
+
# 7. لتشغيل التطبيق محلياً (إختياري)
|
| 55 |
+
if __name__ == "__main__":
|
| 56 |
+
import uvicorn
|
| 57 |
+
uvicorn.run(app, host="0.0.0.0", port=8000)
|