PYTHON = python WHISPER_PREFIX = ../../ WHISPER_MODEL = tiny WHISPER_CLI = $(WHISPER_PREFIX)build/bin/whisper-cli WHISPER_FLAGS = --no-prints --language en --output-txt # You can create eval.conf to override the WHISPER_* variables # defined above. -include eval.conf # Add `EARNINGS21_EVAL10 = yes` to eval.conf to switch to a # 10-hour subset. See "speech-datasets/earnings21/README.md" for # more details about this subset. ifdef EARNINGS21_EVAL10 METADATA_CSV = speech-datasets/earnings21/eval10-file-metadata.csv AUDIO_SRCS = speech-datasets/earnings21/media/4320211.mp3 \ speech-datasets/earnings21/media/4341191.mp3 \ speech-datasets/earnings21/media/4346818.mp3 \ speech-datasets/earnings21/media/4359971.mp3 \ speech-datasets/earnings21/media/4365024.mp3 \ speech-datasets/earnings21/media/4366522.mp3 \ speech-datasets/earnings21/media/4366893.mp3 \ speech-datasets/earnings21/media/4367535.mp3 \ speech-datasets/earnings21/media/4383161.mp3 \ speech-datasets/earnings21/media/4384964.mp3 \ speech-datasets/earnings21/media/4387332.mp3 else METADATA_CSV = speech-datasets/earnings21/earnings21-file-metadata.csv AUDIO_SRCS = $(sort $(wildcard speech-datasets/earnings21/media/*.mp3)) endif TRANS_TXTS = $(addsuffix .txt, $(AUDIO_SRCS)) # We output the evaluation result to this file. DONE = $(WHISPER_MODEL).txt all: $(DONE) $(DONE): $(TRANS_TXTS) $(PYTHON) eval.py $(METADATA_CSV) > $@.tmp mv $@.tmp $@ # Note: This task writes to a temporary file first to # create the target file atomically. %.mp3.txt: %.mp3 $(WHISPER_CLI) $(WHISPER_FLAGS) --model $(WHISPER_PREFIX)models/ggml-$(WHISPER_MODEL).bin --file $^ --output-file $^.tmp mv $^.tmp.txt $^.txt archive: tar -czf $(WHISPER_MODEL).tar.gz --exclude="*.mp3" speech-datasets/earnings21/media $(DONE) clean: @rm -f $(TRANS_TXTS) @rm -f $(DONE) .PHONY: all archive clean