Spaces:
Running
Running
Commit
·
e446f60
1
Parent(s):
66edfb6
CUDA: remove DMMV, consolidate F16 mult mat vec (llama/10318)
Browse files- ggml/CMakeLists.txt +0 -5
- ggml/src/ggml-cuda/ggml-cuda.cu +19 -185
- ggml/src/ggml-cuda/ggml/CMakeLists.txt +0 -13
- ggml/src/ggml-cuda/mmv.cu +223 -0
- ggml/src/ggml-cuda/mmv.cuh +12 -0
- ggml/src/ggml-hip/CMakeLists.txt +0 -7
- ggml/src/ggml-musa/ggml/CMakeLists.txt +0 -11
ggml/CMakeLists.txt
CHANGED
|
@@ -128,14 +128,9 @@ option(GGML_LLAMAFILE "ggml: use LLAMAFILE"
|
|
| 128 |
|
| 129 |
option(GGML_CUDA "ggml: use CUDA" OFF)
|
| 130 |
option(GGML_MUSA "ggml: use MUSA" OFF)
|
| 131 |
-
option(GGML_CUDA_FORCE_DMMV "ggml: use dmmv instead of mmvq CUDA kernels" OFF)
|
| 132 |
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
|
| 133 |
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
|
| 134 |
-
set (GGML_CUDA_DMMV_X "32" CACHE STRING "ggml: x stride for dmmv CUDA kernels")
|
| 135 |
-
set (GGML_CUDA_MMV_Y "1" CACHE STRING "ggml: y block size for mmv CUDA kernels")
|
| 136 |
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
|
| 137 |
-
set (GGML_CUDA_KQUANTS_ITER "2" CACHE STRING
|
| 138 |
-
"ggml: iters./thread per block for Q2_K/Q6_K")
|
| 139 |
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
| 140 |
"ggml: max. batch size for using peer access")
|
| 141 |
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
|
|
|
| 128 |
|
| 129 |
option(GGML_CUDA "ggml: use CUDA" OFF)
|
| 130 |
option(GGML_MUSA "ggml: use MUSA" OFF)
|
|
|
|
| 131 |
option(GGML_CUDA_FORCE_MMQ "ggml: use mmq kernels instead of cuBLAS" OFF)
|
| 132 |
option(GGML_CUDA_FORCE_CUBLAS "ggml: always use cuBLAS instead of mmq kernels" OFF)
|
|
|
|
|
|
|
| 133 |
option(GGML_CUDA_F16 "ggml: use 16 bit floats for some calculations" OFF)
|
|
|
|
|
|
|
| 134 |
set (GGML_CUDA_PEER_MAX_BATCH_SIZE "128" CACHE STRING
|
| 135 |
"ggml: max. batch size for using peer access")
|
| 136 |
option(GGML_CUDA_NO_PEER_COPY "ggml: do not use peer to peer copies" OFF)
|
ggml/src/ggml-cuda/ggml-cuda.cu
CHANGED
|
@@ -16,11 +16,11 @@
|
|
| 16 |
#include "ggml-cuda/cpy.cuh"
|
| 17 |
#include "ggml-cuda/cross-entropy-loss.cuh"
|
| 18 |
#include "ggml-cuda/diagmask.cuh"
|
| 19 |
-
#include "ggml-cuda/dmmv.cuh"
|
| 20 |
#include "ggml-cuda/fattn.cuh"
|
| 21 |
#include "ggml-cuda/getrows.cuh"
|
| 22 |
#include "ggml-cuda/im2col.cuh"
|
| 23 |
#include "ggml-cuda/mmq.cuh"
|
|
|
|
| 24 |
#include "ggml-cuda/mmvq.cuh"
|
| 25 |
#include "ggml-cuda/norm.cuh"
|
| 26 |
#include "ggml-cuda/opt-step-adamw.cuh"
|
|
@@ -1020,114 +1020,6 @@ typedef void (*ggml_cuda_op_mul_mat_t)(
|
|
| 1020 |
|
| 1021 |
#define MUL_MAT_SRC1_COL_STRIDE 128
|
| 1022 |
|
| 1023 |
-
static __global__ void mul_mat_p021_f16_f32(
|
| 1024 |
-
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst,
|
| 1025 |
-
const int ncols_x, const int nrows_x, const int nchannels_x, const int nchannels_y) {
|
| 1026 |
-
|
| 1027 |
-
const half * x = (const half *) vx;
|
| 1028 |
-
|
| 1029 |
-
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
| 1030 |
-
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
| 1031 |
-
const int channel_x = channel / (nchannels_y / nchannels_x);
|
| 1032 |
-
|
| 1033 |
-
const int nrows_y = ncols_x;
|
| 1034 |
-
const int nrows_dst = nrows_x;
|
| 1035 |
-
const int row_dst = row_x;
|
| 1036 |
-
|
| 1037 |
-
float tmp = 0.0f;
|
| 1038 |
-
|
| 1039 |
-
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
| 1040 |
-
const int col_x = col_x0 + threadIdx.x;
|
| 1041 |
-
|
| 1042 |
-
if (col_x >= ncols_x) {
|
| 1043 |
-
break;
|
| 1044 |
-
}
|
| 1045 |
-
|
| 1046 |
-
// x is transposed and permuted
|
| 1047 |
-
const int ix = row_x*nchannels_x*ncols_x + channel_x*ncols_x + col_x;
|
| 1048 |
-
const float xi = __half2float(x[ix]);
|
| 1049 |
-
|
| 1050 |
-
const int row_y = col_x;
|
| 1051 |
-
|
| 1052 |
-
// y is not transposed but permuted
|
| 1053 |
-
const int iy = channel*nrows_y + row_y;
|
| 1054 |
-
|
| 1055 |
-
tmp += xi * y[iy];
|
| 1056 |
-
}
|
| 1057 |
-
|
| 1058 |
-
// dst is not transposed and not permuted
|
| 1059 |
-
const int idst = channel*nrows_dst + row_dst;
|
| 1060 |
-
|
| 1061 |
-
// sum up partial sums and write back result
|
| 1062 |
-
tmp = warp_reduce_sum(tmp);
|
| 1063 |
-
|
| 1064 |
-
if (threadIdx.x == 0) {
|
| 1065 |
-
dst[idst] = tmp;
|
| 1066 |
-
}
|
| 1067 |
-
}
|
| 1068 |
-
|
| 1069 |
-
static __global__ void mul_mat_vec_nc_f16_f32( // nc == non-contiguous
|
| 1070 |
-
const void * __restrict__ vx, const float * __restrict__ y, float * __restrict__ dst, const int ncols_x, const int nrows_x,
|
| 1071 |
-
const int row_stride_x, const int channel_stride_x, const int channel_x_divisor) {
|
| 1072 |
-
|
| 1073 |
-
const half * x = (const half *) vx;
|
| 1074 |
-
|
| 1075 |
-
const int row_x = blockDim.y*blockIdx.y + threadIdx.y;
|
| 1076 |
-
const int channel = blockDim.z*blockIdx.z + threadIdx.z;
|
| 1077 |
-
const int channel_x = channel / channel_x_divisor;
|
| 1078 |
-
|
| 1079 |
-
const int nrows_y = ncols_x;
|
| 1080 |
-
const int nrows_dst = nrows_x;
|
| 1081 |
-
const int row_dst = row_x;
|
| 1082 |
-
|
| 1083 |
-
const int idst = channel*nrows_dst + row_dst;
|
| 1084 |
-
|
| 1085 |
-
float tmp = 0.0f;
|
| 1086 |
-
|
| 1087 |
-
for (int col_x0 = 0; col_x0 < ncols_x; col_x0 += blockDim.x) {
|
| 1088 |
-
const int col_x = col_x0 + threadIdx.x;
|
| 1089 |
-
|
| 1090 |
-
if (col_x >= ncols_x) {
|
| 1091 |
-
break;
|
| 1092 |
-
}
|
| 1093 |
-
|
| 1094 |
-
const int row_y = col_x;
|
| 1095 |
-
|
| 1096 |
-
const int ix = channel_x*channel_stride_x + row_x*row_stride_x + col_x;
|
| 1097 |
-
const int iy = channel*nrows_y + row_y;
|
| 1098 |
-
|
| 1099 |
-
const float xi = __half2float(x[ix]);
|
| 1100 |
-
|
| 1101 |
-
tmp += xi * y[iy];
|
| 1102 |
-
}
|
| 1103 |
-
|
| 1104 |
-
// sum up partial sums and write back result
|
| 1105 |
-
tmp = warp_reduce_sum(tmp);
|
| 1106 |
-
|
| 1107 |
-
if (threadIdx.x == 0) {
|
| 1108 |
-
dst[idst] = tmp;
|
| 1109 |
-
}
|
| 1110 |
-
}
|
| 1111 |
-
|
| 1112 |
-
static void ggml_mul_mat_p021_f16_f32_cuda(
|
| 1113 |
-
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x,
|
| 1114 |
-
const int nchannels_x, const int nchannels_y, cudaStream_t stream) {
|
| 1115 |
-
|
| 1116 |
-
const dim3 block_nums(1, nrows_x, nchannels_y);
|
| 1117 |
-
const dim3 block_dims(WARP_SIZE, 1, 1);
|
| 1118 |
-
mul_mat_p021_f16_f32<<<block_nums, block_dims, 0, stream>>>(vx, y, dst, ncols_x, nrows_x, nchannels_x, nchannels_y);
|
| 1119 |
-
}
|
| 1120 |
-
|
| 1121 |
-
static void ggml_mul_mat_vec_nc_f16_f32_cuda(
|
| 1122 |
-
const void * vx, const float * y, float * dst, const int ncols_x, const int nrows_x, const int row_stride_x,
|
| 1123 |
-
const int nchannels_x, const int nchannels_y, const int channel_stride_x, cudaStream_t stream) {
|
| 1124 |
-
|
| 1125 |
-
const dim3 block_nums(1, nrows_x, nchannels_y);
|
| 1126 |
-
const dim3 block_dims(WARP_SIZE, 1, 1);
|
| 1127 |
-
mul_mat_vec_nc_f16_f32<<<block_nums, block_dims, 0, stream>>>
|
| 1128 |
-
(vx, y, dst, ncols_x, nrows_x, row_stride_x, channel_stride_x, nchannels_y/nchannels_x);
|
| 1129 |
-
}
|
| 1130 |
-
|
| 1131 |
static cudaError_t ggml_cuda_cpy_tensor_2d(
|
| 1132 |
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
| 1133 |
|
|
@@ -1654,58 +1546,6 @@ static void ggml_cuda_op_mul_mat(
|
|
| 1654 |
}
|
| 1655 |
}
|
| 1656 |
|
| 1657 |
-
static void ggml_cuda_mul_mat_vec_p021(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
| 1658 |
-
GGML_ASSERT(ggml_is_permuted(src0) && ggml_is_permuted(src1));
|
| 1659 |
-
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
| 1660 |
-
GGML_ASSERT(src0->nb[0] <= src0->nb[1] && src0->nb[2] <= src0->nb[3]); // 0213 permutation
|
| 1661 |
-
GGML_ASSERT(src1->nb[0] <= src1->nb[1] && src1->nb[2] <= src1->nb[3]); // 0213 permutation
|
| 1662 |
-
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
| 1663 |
-
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
| 1664 |
-
|
| 1665 |
-
const int64_t ne00 = src0->ne[0];
|
| 1666 |
-
const int64_t ne01 = src0->ne[1];
|
| 1667 |
-
const int64_t ne02 = src0->ne[2];
|
| 1668 |
-
|
| 1669 |
-
const int64_t ne12 = src1->ne[2];
|
| 1670 |
-
|
| 1671 |
-
cudaStream_t main_stream = ctx.stream();
|
| 1672 |
-
|
| 1673 |
-
void * src0_ddq = src0->data;
|
| 1674 |
-
float * src1_ddf = (float *) src1->data;
|
| 1675 |
-
float * dst_ddf = (float *) dst->data;
|
| 1676 |
-
|
| 1677 |
-
ggml_mul_mat_p021_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, ne02, ne12, main_stream);
|
| 1678 |
-
}
|
| 1679 |
-
|
| 1680 |
-
static void ggml_cuda_mul_mat_vec_nc(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
| 1681 |
-
GGML_ASSERT(!ggml_is_transposed(src0));
|
| 1682 |
-
GGML_ASSERT(!ggml_is_transposed(src1));
|
| 1683 |
-
GGML_ASSERT(!ggml_is_permuted(src0));
|
| 1684 |
-
GGML_ASSERT(ggml_backend_buffer_is_cuda(src0->buffer));
|
| 1685 |
-
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
| 1686 |
-
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
| 1687 |
-
|
| 1688 |
-
const int64_t ne00 = src0->ne[0];
|
| 1689 |
-
const int64_t ne01 = src0->ne[1];
|
| 1690 |
-
const int64_t ne02 = src0->ne[2];
|
| 1691 |
-
|
| 1692 |
-
const int64_t nb01 = src0->nb[1];
|
| 1693 |
-
const int64_t nb02 = src0->nb[2];
|
| 1694 |
-
|
| 1695 |
-
const int64_t ne12 = src1->ne[2];
|
| 1696 |
-
|
| 1697 |
-
cudaStream_t main_stream = ctx.stream();
|
| 1698 |
-
|
| 1699 |
-
void * src0_ddq = src0->data;
|
| 1700 |
-
float * src1_ddf = (float *) src1->data;
|
| 1701 |
-
float * dst_ddf = (float *) dst->data;
|
| 1702 |
-
|
| 1703 |
-
const int64_t row_stride_x = nb01 / sizeof(half);
|
| 1704 |
-
const int64_t channel_stride_x = nb02 / sizeof(half);
|
| 1705 |
-
|
| 1706 |
-
ggml_mul_mat_vec_nc_f16_f32_cuda(src0_ddq, src1_ddf, dst_ddf, ne00, ne01, row_stride_x, ne02, ne12, channel_stride_x, main_stream);
|
| 1707 |
-
}
|
| 1708 |
-
|
| 1709 |
static __global__ void k_compute_batched_ptrs(
|
| 1710 |
const half * src0_as_f16, const half * src1_as_f16, char * dst,
|
| 1711 |
const void ** ptrs_src, void ** ptrs_dst,
|
|
@@ -1879,21 +1719,17 @@ static void ggml_cuda_mul_mat_batched_cublas(ggml_backend_cuda_context & ctx, co
|
|
| 1879 |
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
| 1880 |
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
|
| 1881 |
|
| 1882 |
-
bool
|
| 1883 |
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
| 1884 |
-
&& src0->ne[0] %
|
| 1885 |
-
bool
|
| 1886 |
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
| 1887 |
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
| 1888 |
-
bool
|
| 1889 |
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
| 1890 |
|
| 1891 |
-
|
| 1892 |
-
|
| 1893 |
-
use_dequantize_mul_mat_vec = use_dequantize_mul_mat_vec && !use_mul_mat_vec_q;
|
| 1894 |
-
#endif // GGML_CUDA_FORCE_DMMV
|
| 1895 |
-
|
| 1896 |
-
bool any_gpus_with_slow_fp16 = false;
|
| 1897 |
|
| 1898 |
if (split) {
|
| 1899 |
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
|
@@ -1904,14 +1740,16 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|
| 1904 |
continue;
|
| 1905 |
}
|
| 1906 |
|
| 1907 |
-
const int cc
|
| 1908 |
-
use_mul_mat_q
|
| 1909 |
-
any_gpus_with_slow_fp16
|
|
|
|
| 1910 |
}
|
| 1911 |
} else {
|
| 1912 |
-
const int cc
|
| 1913 |
-
use_mul_mat_q
|
| 1914 |
-
any_gpus_with_slow_fp16
|
|
|
|
| 1915 |
}
|
| 1916 |
|
| 1917 |
// debug helpers
|
|
@@ -1922,18 +1760,14 @@ static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor
|
|
| 1922 |
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
| 1923 |
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
| 1924 |
|
| 1925 |
-
if (!split &&
|
| 1926 |
-
|
| 1927 |
-
ggml_cuda_mul_mat_vec_p021(ctx, src0, src1, dst);
|
| 1928 |
-
} else if (!split && any_gpus_with_slow_fp16 && src0->type == GGML_TYPE_F16 && !ggml_is_contiguous(src0) && !ggml_is_transposed(src1) && src1->ne[1] == 1) {
|
| 1929 |
-
// FP32 precision KQV single-batch for batch size 1 without FlashAttention
|
| 1930 |
-
ggml_cuda_mul_mat_vec_nc(ctx, src0, src1, dst);
|
| 1931 |
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
|
| 1932 |
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
| 1933 |
// KQ + KQV multi-batch without FlashAttention
|
| 1934 |
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
|
| 1935 |
-
} else if (
|
| 1936 |
-
ggml_cuda_op_mul_mat(ctx, src0, src1, dst,
|
| 1937 |
} else if (use_mul_mat_vec_q) {
|
| 1938 |
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
|
| 1939 |
} else if (use_mul_mat_q) {
|
|
|
|
| 16 |
#include "ggml-cuda/cpy.cuh"
|
| 17 |
#include "ggml-cuda/cross-entropy-loss.cuh"
|
| 18 |
#include "ggml-cuda/diagmask.cuh"
|
|
|
|
| 19 |
#include "ggml-cuda/fattn.cuh"
|
| 20 |
#include "ggml-cuda/getrows.cuh"
|
| 21 |
#include "ggml-cuda/im2col.cuh"
|
| 22 |
#include "ggml-cuda/mmq.cuh"
|
| 23 |
+
#include "ggml-cuda/mmv.cuh"
|
| 24 |
#include "ggml-cuda/mmvq.cuh"
|
| 25 |
#include "ggml-cuda/norm.cuh"
|
| 26 |
#include "ggml-cuda/opt-step-adamw.cuh"
|
|
|
|
| 1020 |
|
| 1021 |
#define MUL_MAT_SRC1_COL_STRIDE 128
|
| 1022 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1023 |
static cudaError_t ggml_cuda_cpy_tensor_2d(
|
| 1024 |
void * dst, const struct ggml_tensor * src, int64_t i3, int64_t i2, int64_t i1_low, int64_t i1_high, cudaStream_t stream) {
|
| 1025 |
|
|
|
|
| 1546 |
}
|
| 1547 |
}
|
| 1548 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1549 |
static __global__ void k_compute_batched_ptrs(
|
| 1550 |
const half * src0_as_f16, const half * src1_as_f16, char * dst,
|
| 1551 |
const void ** ptrs_src, void ** ptrs_dst,
|
|
|
|
| 1719 |
static void ggml_cuda_mul_mat(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
| 1720 |
const bool split = ggml_backend_buft_is_cuda_split(src0->buffer->buft);
|
| 1721 |
|
| 1722 |
+
bool use_mul_mat_vec = src0->type == GGML_TYPE_F16
|
| 1723 |
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
| 1724 |
+
&& src0->ne[0] % 2 == 0 && src1->ne[1] == 1;
|
| 1725 |
+
bool use_mul_mat_vec_q = ggml_is_quantized(src0->type)
|
| 1726 |
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32
|
| 1727 |
&& src1->ne[1] <= MMVQ_MAX_BATCH_SIZE;
|
| 1728 |
+
bool use_mul_mat_q = ggml_is_quantized(src0->type)
|
| 1729 |
&& src1->type == GGML_TYPE_F32 && dst->type == GGML_TYPE_F32;
|
| 1730 |
|
| 1731 |
+
bool any_gpus_with_slow_fp16 = false;
|
| 1732 |
+
bool any_gpus_without_fp16_mma = false;
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1733 |
|
| 1734 |
if (split) {
|
| 1735 |
ggml_backend_cuda_split_buffer_type_context * buft_ctx = (ggml_backend_cuda_split_buffer_type_context *) src0->buffer->buft->context;
|
|
|
|
| 1740 |
continue;
|
| 1741 |
}
|
| 1742 |
|
| 1743 |
+
const int cc = ggml_cuda_info().devices[id].cc;
|
| 1744 |
+
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
| 1745 |
+
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
|
| 1746 |
+
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
|
| 1747 |
}
|
| 1748 |
} else {
|
| 1749 |
+
const int cc = ggml_cuda_info().devices[ctx.device].cc;
|
| 1750 |
+
use_mul_mat_q = use_mul_mat_q && ggml_cuda_should_use_mmq(src0->type, cc, src1->ne[1]);
|
| 1751 |
+
any_gpus_with_slow_fp16 = any_gpus_with_slow_fp16 || !fast_fp16_available(cc);
|
| 1752 |
+
any_gpus_without_fp16_mma = any_gpus_without_fp16_mma || !fp16_mma_available(cc);
|
| 1753 |
}
|
| 1754 |
|
| 1755 |
// debug helpers
|
|
|
|
| 1760 |
//printf("src0 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src0), ggml_is_transposed(src0), ggml_type_name(src0->type), src0->name);
|
| 1761 |
//printf("src1 is contiguous %d, transposed %d, type = %s, name = %s\n", ggml_is_contiguous(src1), ggml_is_transposed(src1), ggml_type_name(src1->type), src1->name);
|
| 1762 |
|
| 1763 |
+
if (!split && src0->type == GGML_TYPE_F16 && src1->ne[1] == 1 && dst->ne[3] == 1 && (src0->ne[1] < MMV_MAX_ROWS || any_gpus_without_fp16_mma)) {
|
| 1764 |
+
ggml_cuda_mul_mat_vec(ctx, src0, src1, dst);
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1765 |
} else if (!split && src0->type == GGML_TYPE_F16 && (src1->type == GGML_TYPE_F16 || !any_gpus_with_slow_fp16)
|
| 1766 |
&& !ggml_is_transposed(src0) && !ggml_is_transposed(src1) && src1->ne[2]*src1->ne[3] > 1) {
|
| 1767 |
// KQ + KQV multi-batch without FlashAttention
|
| 1768 |
ggml_cuda_mul_mat_batched_cublas(ctx, src0, src1, dst);
|
| 1769 |
+
} else if (use_mul_mat_vec) {
|
| 1770 |
+
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec, nullptr);
|
| 1771 |
} else if (use_mul_mat_vec_q) {
|
| 1772 |
ggml_cuda_op_mul_mat(ctx, src0, src1, dst, ggml_cuda_op_mul_mat_vec_q, quantize_row_q8_1_cuda);
|
| 1773 |
} else if (use_mul_mat_q) {
|
ggml/src/ggml-cuda/ggml/CMakeLists.txt
CHANGED
|
@@ -54,21 +54,12 @@ if (CUDAToolkit_FOUND)
|
|
| 54 |
target_link_libraries(ggml-cuda PRIVATE ggml-base)
|
| 55 |
target_include_directories(ggml-cuda PRIVATE . ..)
|
| 56 |
|
| 57 |
-
# TODO: change the definitions to this target only
|
| 58 |
-
|
| 59 |
-
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
| 60 |
-
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
| 61 |
-
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
| 62 |
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
| 63 |
|
| 64 |
if (GGML_CUDA_GRAPHS)
|
| 65 |
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
| 66 |
endif()
|
| 67 |
|
| 68 |
-
if (GGML_CUDA_FORCE_DMMV)
|
| 69 |
-
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
| 70 |
-
endif()
|
| 71 |
-
|
| 72 |
if (GGML_CUDA_FORCE_MMQ)
|
| 73 |
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
| 74 |
endif()
|
|
@@ -81,10 +72,6 @@ if (CUDAToolkit_FOUND)
|
|
| 81 |
add_compile_definitions(GGML_CUDA_NO_VMM)
|
| 82 |
endif()
|
| 83 |
|
| 84 |
-
if (DEFINED GGML_CUDA_DMMV_Y)
|
| 85 |
-
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
|
| 86 |
-
endif()
|
| 87 |
-
|
| 88 |
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
| 89 |
add_compile_definitions(GGML_CUDA_F16)
|
| 90 |
endif()
|
|
|
|
| 54 |
target_link_libraries(ggml-cuda PRIVATE ggml-base)
|
| 55 |
target_include_directories(ggml-cuda PRIVATE . ..)
|
| 56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
| 58 |
|
| 59 |
if (GGML_CUDA_GRAPHS)
|
| 60 |
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
| 61 |
endif()
|
| 62 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
if (GGML_CUDA_FORCE_MMQ)
|
| 64 |
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
| 65 |
endif()
|
|
|
|
| 72 |
add_compile_definitions(GGML_CUDA_NO_VMM)
|
| 73 |
endif()
|
| 74 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
| 76 |
add_compile_definitions(GGML_CUDA_F16)
|
| 77 |
endif()
|
ggml/src/ggml-cuda/mmv.cu
ADDED
|
@@ -0,0 +1,223 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "common.cuh"
|
| 2 |
+
#include "mmv.cuh"
|
| 3 |
+
|
| 4 |
+
template <typename type_acc, int block_size>
|
| 5 |
+
static __global__ void mul_mat_vec(
|
| 6 |
+
const half * __restrict__ x, const float * __restrict__ y, float * __restrict__ dst, const int64_t ncols2, const int64_t stride_row,
|
| 7 |
+
const int64_t channel_ratio, const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst) {
|
| 8 |
+
const int64_t row = blockIdx.x;
|
| 9 |
+
const int64_t channel = blockIdx.z;
|
| 10 |
+
const int tid = threadIdx.x;
|
| 11 |
+
|
| 12 |
+
x += (channel/channel_ratio)*stride_channel_x + row*stride_row;
|
| 13 |
+
y += channel *stride_channel_y;
|
| 14 |
+
dst += channel *stride_channel_dst;
|
| 15 |
+
|
| 16 |
+
const half2 * x2 = (const half2 *) x;
|
| 17 |
+
const float2 * y2 = (const float2 *) y;
|
| 18 |
+
|
| 19 |
+
extern __shared__ char data_mmv[];
|
| 20 |
+
float * buf_iw = (float *) data_mmv;
|
| 21 |
+
|
| 22 |
+
if (block_size > WARP_SIZE) {
|
| 23 |
+
if (tid < WARP_SIZE) {
|
| 24 |
+
buf_iw[tid] = 0.0f;
|
| 25 |
+
}
|
| 26 |
+
__syncthreads();
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
float sumf;
|
| 30 |
+
|
| 31 |
+
if (std::is_same<type_acc, float>::value) {
|
| 32 |
+
sumf = 0.0f;
|
| 33 |
+
|
| 34 |
+
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
|
| 35 |
+
const float2 tmpx = __half22float2(x2[col2]);
|
| 36 |
+
const float2 tmpy = y2[col2];
|
| 37 |
+
sumf += tmpx.x * tmpy.x;
|
| 38 |
+
sumf += tmpx.y * tmpy.y;
|
| 39 |
+
}
|
| 40 |
+
} else {
|
| 41 |
+
#ifdef FP16_AVAILABLE
|
| 42 |
+
half2 sumh2 = make_half2(0.0f, 0.0f);
|
| 43 |
+
|
| 44 |
+
for (int64_t col2 = tid; col2 < ncols2; col2 += block_size) {
|
| 45 |
+
const float2 tmp = y2[col2];
|
| 46 |
+
sumh2 += x2[col2] * make_half2(tmp.x, tmp.y);
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
sumf = __low2float(sumh2) + __high2float(sumh2);
|
| 50 |
+
#else
|
| 51 |
+
NO_DEVICE_CODE;
|
| 52 |
+
#endif // FP16_AVAILABLE
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
sumf = warp_reduce_sum(sumf);
|
| 56 |
+
|
| 57 |
+
if (block_size > WARP_SIZE) {
|
| 58 |
+
buf_iw[tid/WARP_SIZE] = sumf;
|
| 59 |
+
__syncthreads();
|
| 60 |
+
if (tid > WARP_SIZE) {
|
| 61 |
+
return;
|
| 62 |
+
}
|
| 63 |
+
sumf = buf_iw[tid];
|
| 64 |
+
sumf = warp_reduce_sum(sumf);
|
| 65 |
+
}
|
| 66 |
+
|
| 67 |
+
if (tid != 0) {
|
| 68 |
+
return;
|
| 69 |
+
}
|
| 70 |
+
|
| 71 |
+
dst[row] = sumf;
|
| 72 |
+
}
|
| 73 |
+
|
| 74 |
+
template <typename type_acc>
|
| 75 |
+
static void launch_mul_mat_vec_cuda(
|
| 76 |
+
const half * x, const float * y, float * dst,
|
| 77 |
+
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
|
| 78 |
+
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
| 79 |
+
cudaStream_t stream) {
|
| 80 |
+
GGML_ASSERT(ncols % 2 == 0);
|
| 81 |
+
GGML_ASSERT(stride_row % 2 == 0);
|
| 82 |
+
GGML_ASSERT(nchannels_y % nchannels_x == 0);
|
| 83 |
+
const int64_t channel_ratio = nchannels_y / nchannels_x;
|
| 84 |
+
|
| 85 |
+
int64_t block_size_best = WARP_SIZE;
|
| 86 |
+
int64_t niter_best = (ncols + 2*WARP_SIZE - 1) / (2*WARP_SIZE);
|
| 87 |
+
for (int64_t block_size = 2*WARP_SIZE; block_size <= 256; block_size += WARP_SIZE) {
|
| 88 |
+
const int64_t niter = (ncols + 2*block_size - 1) / (2*block_size);
|
| 89 |
+
if (niter < niter_best) {
|
| 90 |
+
niter_best = niter;
|
| 91 |
+
block_size_best = block_size;
|
| 92 |
+
}
|
| 93 |
+
}
|
| 94 |
+
|
| 95 |
+
const int smem = WARP_SIZE*sizeof(float);
|
| 96 |
+
const dim3 block_nums(nrows, 1, nchannels_y);
|
| 97 |
+
const dim3 block_dims(block_size_best, 1, 1);
|
| 98 |
+
switch (block_size_best) {
|
| 99 |
+
case 32: {
|
| 100 |
+
mul_mat_vec<type_acc, 32><<<block_nums, block_dims, smem, stream>>>
|
| 101 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 102 |
+
} break;
|
| 103 |
+
case 64: {
|
| 104 |
+
mul_mat_vec<type_acc, 64><<<block_nums, block_dims, smem, stream>>>
|
| 105 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 106 |
+
} break;
|
| 107 |
+
case 96: {
|
| 108 |
+
mul_mat_vec<type_acc, 96><<<block_nums, block_dims, smem, stream>>>
|
| 109 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 110 |
+
} break;
|
| 111 |
+
case 128: {
|
| 112 |
+
mul_mat_vec<type_acc, 128><<<block_nums, block_dims, smem, stream>>>
|
| 113 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 114 |
+
} break;
|
| 115 |
+
case 160: {
|
| 116 |
+
mul_mat_vec<type_acc, 160><<<block_nums, block_dims, smem, stream>>>
|
| 117 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 118 |
+
} break;
|
| 119 |
+
case 192: {
|
| 120 |
+
mul_mat_vec<type_acc, 192><<<block_nums, block_dims, smem, stream>>>
|
| 121 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 122 |
+
} break;
|
| 123 |
+
case 224: {
|
| 124 |
+
mul_mat_vec<type_acc, 224><<<block_nums, block_dims, smem, stream>>>
|
| 125 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 126 |
+
} break;
|
| 127 |
+
case 256: {
|
| 128 |
+
mul_mat_vec<type_acc, 256><<<block_nums, block_dims, smem, stream>>>
|
| 129 |
+
(x, y, dst, ncols/2, stride_row, channel_ratio, stride_channel_x, stride_channel_y, stride_channel_dst);
|
| 130 |
+
} break;
|
| 131 |
+
default: {
|
| 132 |
+
GGML_ABORT("fatal error");
|
| 133 |
+
} break;
|
| 134 |
+
}
|
| 135 |
+
}
|
| 136 |
+
|
| 137 |
+
static void mul_mat_vec_cuda(
|
| 138 |
+
const half * x, const float * y, float * dst,
|
| 139 |
+
const int64_t ncols, const int64_t nrows, const int64_t stride_row, const int64_t nchannels_x, const int64_t nchannels_y,
|
| 140 |
+
const int64_t stride_channel_x, const int64_t stride_channel_y, const int64_t stride_channel_dst,
|
| 141 |
+
enum ggml_prec prec, cudaStream_t stream) {
|
| 142 |
+
switch (prec) {
|
| 143 |
+
case GGML_PREC_DEFAULT: {
|
| 144 |
+
launch_mul_mat_vec_cuda<half>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
|
| 145 |
+
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
|
| 146 |
+
} break;
|
| 147 |
+
case GGML_PREC_F32: {
|
| 148 |
+
launch_mul_mat_vec_cuda<float>(x, y, dst, ncols, nrows, stride_row, nchannels_x, nchannels_y,
|
| 149 |
+
stride_channel_x, stride_channel_y, stride_channel_dst, stream);
|
| 150 |
+
} break;
|
| 151 |
+
}
|
| 152 |
+
}
|
| 153 |
+
|
| 154 |
+
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst) {
|
| 155 |
+
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
| 156 |
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
| 157 |
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
| 158 |
+
|
| 159 |
+
const int64_t ne00 = src0->ne[0];
|
| 160 |
+
const int64_t ne01 = src0->ne[1];
|
| 161 |
+
|
| 162 |
+
GGML_ASSERT(src1->ne[1] == 1);
|
| 163 |
+
|
| 164 |
+
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
| 165 |
+
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
|
| 166 |
+
|
| 167 |
+
const half * src0_d = (const half *) src0->data;
|
| 168 |
+
const float * src1_d = (const float *) src1->data;
|
| 169 |
+
float * dst_d = (float *) dst->data;
|
| 170 |
+
|
| 171 |
+
const int64_t ne02 = src0->ne[2];
|
| 172 |
+
const int64_t ne12 = src1->ne[2];
|
| 173 |
+
GGML_ASSERT(dst->ne[2] == ne12);
|
| 174 |
+
|
| 175 |
+
GGML_ASSERT(src0->ne[3] == 1);
|
| 176 |
+
GGML_ASSERT(src1->ne[3] == 1);
|
| 177 |
+
GGML_ASSERT( dst->ne[3] == 1);
|
| 178 |
+
|
| 179 |
+
const int64_t stride_row = src0->nb[1] / ggml_type_size(src0->type);
|
| 180 |
+
const int64_t channel_stride_x = src0->nb[2] / ggml_type_size(src0->type);
|
| 181 |
+
const int64_t channel_stride_y = src1->nb[2] / ggml_type_size(src1->type);
|
| 182 |
+
const int64_t channel_stride_dst = dst->nb[2] / ggml_type_size( dst->type);
|
| 183 |
+
|
| 184 |
+
mul_mat_vec_cuda(src0_d, src1_d, dst_d, ne00, ne01, stride_row, ne02, ne12, channel_stride_x, channel_stride_y, channel_stride_dst, prec, ctx.stream());
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
void ggml_cuda_op_mul_mat_vec(
|
| 188 |
+
ggml_backend_cuda_context & ctx,
|
| 189 |
+
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
| 190 |
+
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
| 191 |
+
const int64_t src1_padded_row_size, cudaStream_t stream) {
|
| 192 |
+
|
| 193 |
+
GGML_ASSERT(src0->type == GGML_TYPE_F16);
|
| 194 |
+
GGML_ASSERT(src1->type == GGML_TYPE_F32);
|
| 195 |
+
GGML_ASSERT(dst->type == GGML_TYPE_F32);
|
| 196 |
+
|
| 197 |
+
const int64_t ne00 = src0->ne[0];
|
| 198 |
+
const int64_t row_diff = row_high - row_low;
|
| 199 |
+
|
| 200 |
+
GGML_ASSERT(src1_ncols == 1);
|
| 201 |
+
|
| 202 |
+
const int cc = ggml_cuda_info().devices[ggml_cuda_get_device()].cc;
|
| 203 |
+
const enum ggml_prec prec = fast_fp16_available(cc) ? ggml_prec(dst->op_params[0]) : GGML_PREC_F32;
|
| 204 |
+
|
| 205 |
+
|
| 206 |
+
// ggml_cuda_op provides single, contiguous matrices
|
| 207 |
+
const int64_t stride_row = ne00;
|
| 208 |
+
const int64_t nchannels_x = 1;
|
| 209 |
+
const int64_t nchannels_y = 1;
|
| 210 |
+
const int64_t channel_stride_x = 0;
|
| 211 |
+
const int64_t channel_stride_y = 0;
|
| 212 |
+
const int64_t channel_stride_dst = 0;
|
| 213 |
+
|
| 214 |
+
mul_mat_vec_cuda((const half *) src0_dd_i, src1_ddf_i, dst_dd_i, ne00, row_diff, stride_row,
|
| 215 |
+
nchannels_x, nchannels_y, channel_stride_x, channel_stride_y, channel_stride_dst, prec, stream);
|
| 216 |
+
|
| 217 |
+
GGML_UNUSED(ctx);
|
| 218 |
+
GGML_UNUSED(src1);
|
| 219 |
+
GGML_UNUSED(dst);
|
| 220 |
+
GGML_UNUSED(src1_ddq_i);
|
| 221 |
+
GGML_UNUSED(src1_ncols);
|
| 222 |
+
GGML_UNUSED(src1_padded_row_size);
|
| 223 |
+
}
|
ggml/src/ggml-cuda/mmv.cuh
ADDED
|
@@ -0,0 +1,12 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "common.cuh"
|
| 2 |
+
|
| 3 |
+
// maximum number of src0 rows with which to use mul_mat_vec over cuBLAS if FP16 tensor cores are available
|
| 4 |
+
#define MMV_MAX_ROWS 512
|
| 5 |
+
|
| 6 |
+
void ggml_cuda_mul_mat_vec(ggml_backend_cuda_context & ctx, const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst);
|
| 7 |
+
|
| 8 |
+
void ggml_cuda_op_mul_mat_vec(
|
| 9 |
+
ggml_backend_cuda_context & ctx,
|
| 10 |
+
const ggml_tensor * src0, const ggml_tensor * src1, ggml_tensor * dst, const char * src0_dd_i, const float * src1_ddf_i,
|
| 11 |
+
const char * src1_ddq_i, float * dst_dd_i, const int64_t row_low, const int64_t row_high, const int64_t src1_ncols,
|
| 12 |
+
const int64_t src1_padded_row_size, cudaStream_t stream);
|
ggml/src/ggml-hip/CMakeLists.txt
CHANGED
|
@@ -75,18 +75,11 @@ target_include_directories(ggml-hip PRIVATE . ..)
|
|
| 75 |
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
| 76 |
|
| 77 |
add_compile_definitions(GGML_USE_HIP)
|
| 78 |
-
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
| 79 |
-
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
| 80 |
-
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
| 81 |
|
| 82 |
if (GGML_HIP_UMA)
|
| 83 |
add_compile_definitions(GGML_HIP_UMA)
|
| 84 |
endif()
|
| 85 |
|
| 86 |
-
if (GGML_CUDA_FORCE_DMMV)
|
| 87 |
-
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
| 88 |
-
endif()
|
| 89 |
-
|
| 90 |
if (GGML_CUDA_FORCE_MMQ)
|
| 91 |
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
| 92 |
endif()
|
|
|
|
| 75 |
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
| 76 |
|
| 77 |
add_compile_definitions(GGML_USE_HIP)
|
|
|
|
|
|
|
|
|
|
| 78 |
|
| 79 |
if (GGML_HIP_UMA)
|
| 80 |
add_compile_definitions(GGML_HIP_UMA)
|
| 81 |
endif()
|
| 82 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 83 |
if (GGML_CUDA_FORCE_MMQ)
|
| 84 |
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
| 85 |
endif()
|
ggml/src/ggml-musa/ggml/CMakeLists.txt
CHANGED
|
@@ -58,19 +58,12 @@ if (MUSAToolkit_FOUND)
|
|
| 58 |
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
| 59 |
|
| 60 |
add_compile_definitions(GGML_USE_MUSA)
|
| 61 |
-
add_compile_definitions(GGML_CUDA_DMMV_X=${GGML_CUDA_DMMV_X})
|
| 62 |
-
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_MMV_Y})
|
| 63 |
-
add_compile_definitions(K_QUANTS_PER_ITERATION=${GGML_CUDA_KQUANTS_ITER})
|
| 64 |
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
| 65 |
|
| 66 |
if (GGML_CUDA_GRAPHS)
|
| 67 |
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
| 68 |
endif()
|
| 69 |
|
| 70 |
-
if (GGML_CUDA_FORCE_DMMV)
|
| 71 |
-
add_compile_definitions(GGML_CUDA_FORCE_DMMV)
|
| 72 |
-
endif()
|
| 73 |
-
|
| 74 |
if (GGML_CUDA_FORCE_MMQ)
|
| 75 |
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
| 76 |
endif()
|
|
@@ -83,10 +76,6 @@ if (MUSAToolkit_FOUND)
|
|
| 83 |
add_compile_definitions(GGML_CUDA_NO_VMM)
|
| 84 |
endif()
|
| 85 |
|
| 86 |
-
if (DEFINED GGML_CUDA_DMMV_Y)
|
| 87 |
-
add_compile_definitions(GGML_CUDA_MMV_Y=${GGML_CUDA_DMMV_Y}) # for backwards compatibility
|
| 88 |
-
endif()
|
| 89 |
-
|
| 90 |
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
| 91 |
add_compile_definitions(GGML_CUDA_F16)
|
| 92 |
endif()
|
|
|
|
| 58 |
target_compile_definitions(ggml PUBLIC GGML_USE_CUDA)
|
| 59 |
|
| 60 |
add_compile_definitions(GGML_USE_MUSA)
|
|
|
|
|
|
|
|
|
|
| 61 |
add_compile_definitions(GGML_CUDA_PEER_MAX_BATCH_SIZE=${GGML_CUDA_PEER_MAX_BATCH_SIZE})
|
| 62 |
|
| 63 |
if (GGML_CUDA_GRAPHS)
|
| 64 |
add_compile_definitions(GGML_CUDA_USE_GRAPHS)
|
| 65 |
endif()
|
| 66 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
if (GGML_CUDA_FORCE_MMQ)
|
| 68 |
add_compile_definitions(GGML_CUDA_FORCE_MMQ)
|
| 69 |
endif()
|
|
|
|
| 76 |
add_compile_definitions(GGML_CUDA_NO_VMM)
|
| 77 |
endif()
|
| 78 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
if (GGML_CUDA_F16 OR GGML_CUDA_DMMV_F16)
|
| 80 |
add_compile_definitions(GGML_CUDA_F16)
|
| 81 |
endif()
|