Spaces:
Running
Running
talk : talk with AI in the terminal
Browse files- .gitignore +1 -0
- Makefile +4 -1
- README.md +1 -1
- examples/CMakeLists.txt +1 -0
- examples/command/command.cpp +0 -1
- examples/talk.wasm/README.md +2 -0
- examples/talk/.gitignore +1 -0
- examples/talk/CMakeLists.txt +7 -0
- examples/talk/README.md +33 -0
- examples/talk/gpt-2.cpp +925 -0
- examples/talk/gpt-2.h +27 -0
- examples/talk/speak.sh +17 -0
- examples/talk/talk.cpp +733 -0
- ggml.c +1 -2
.gitignore
CHANGED
|
@@ -14,6 +14,7 @@ build-sanitize-thread/
|
|
| 14 |
main
|
| 15 |
stream
|
| 16 |
command
|
|
|
|
| 17 |
bench
|
| 18 |
sync.sh
|
| 19 |
libwhisper.so
|
|
|
|
| 14 |
main
|
| 15 |
stream
|
| 16 |
command
|
| 17 |
+
talk
|
| 18 |
bench
|
| 19 |
sync.sh
|
| 20 |
libwhisper.so
|
Makefile
CHANGED
|
@@ -154,7 +154,7 @@ libwhisper.so: ggml.o whisper.o
|
|
| 154 |
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
| 155 |
|
| 156 |
clean:
|
| 157 |
-
rm -f *.o main stream command bench libwhisper.a libwhisper.so
|
| 158 |
|
| 159 |
#
|
| 160 |
# Examples
|
|
@@ -172,6 +172,9 @@ stream: examples/stream/stream.cpp ggml.o whisper.o
|
|
| 172 |
command: examples/command/command.cpp ggml.o whisper.o
|
| 173 |
$(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
| 174 |
|
|
|
|
|
|
|
|
|
|
| 175 |
bench: examples/bench/bench.cpp ggml.o whisper.o
|
| 176 |
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
| 177 |
|
|
|
|
| 154 |
$(CXX) $(CXXFLAGS) -shared -o libwhisper.so ggml.o whisper.o $(LDFLAGS)
|
| 155 |
|
| 156 |
clean:
|
| 157 |
+
rm -f *.o main stream command talk bench libwhisper.a libwhisper.so
|
| 158 |
|
| 159 |
#
|
| 160 |
# Examples
|
|
|
|
| 172 |
command: examples/command/command.cpp ggml.o whisper.o
|
| 173 |
$(CXX) $(CXXFLAGS) examples/command/command.cpp ggml.o whisper.o -o command $(CC_SDL) $(LDFLAGS)
|
| 174 |
|
| 175 |
+
talk: examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o
|
| 176 |
+
$(CXX) $(CXXFLAGS) examples/talk/talk.cpp examples/talk/gpt-2.cpp ggml.o whisper.o -o talk $(CC_SDL) $(LDFLAGS)
|
| 177 |
+
|
| 178 |
bench: examples/bench/bench.cpp ggml.o whisper.o
|
| 179 |
$(CXX) $(CXXFLAGS) examples/bench/bench.cpp ggml.o whisper.o -o bench $(LDFLAGS)
|
| 180 |
|
README.md
CHANGED
|
@@ -462,7 +462,7 @@ Some of the examples are even ported to run in the browser using WebAssembly. Ch
|
|
| 462 |
| [bench](examples/bench) | | Benchmark the performance of Whisper on your machine |
|
| 463 |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
| 464 |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
| 465 |
-
| | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot
|
| 466 |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
| 467 |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
|
| 468 |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
|
|
|
|
| 462 |
| [bench](examples/bench) | | Benchmark the performance of Whisper on your machine |
|
| 463 |
| [stream](examples/stream) | [stream.wasm](examples/stream.wasm) | Real-time transcription of raw microphone capture |
|
| 464 |
| [command](examples/command) | [command.wasm](examples/command.wasm) | Basic voice assistant example for receiving voice commands from the mic |
|
| 465 |
+
| [talk](examples/talk) | [talk.wasm](examples/talk.wasm) | Talk with a GPT-2 bot |
|
| 466 |
| [whisper.objc](examples/whisper.objc) | | iOS mobile application using whisper.cpp |
|
| 467 |
| [whisper.nvim](examples/whisper.nvim) | | Speech-to-text plugin for Neovim |
|
| 468 |
| [generate-karaoke.sh](examples/generate-karaoke.sh) | | Helper script to easily [generate a karaoke video](https://youtu.be/uj7hVta4blM) of raw audio capture |
|
examples/CMakeLists.txt
CHANGED
|
@@ -28,4 +28,5 @@ else()
|
|
| 28 |
add_subdirectory(stream)
|
| 29 |
add_subdirectory(command)
|
| 30 |
add_subdirectory(bench)
|
|
|
|
| 31 |
endif()
|
|
|
|
| 28 |
add_subdirectory(stream)
|
| 29 |
add_subdirectory(command)
|
| 30 |
add_subdirectory(bench)
|
| 31 |
+
add_subdirectory(talk)
|
| 32 |
endif()
|
examples/command/command.cpp
CHANGED
|
@@ -34,7 +34,6 @@ struct whisper_params {
|
|
| 34 |
|
| 35 |
bool speed_up = false;
|
| 36 |
bool translate = false;
|
| 37 |
-
bool no_context = true;
|
| 38 |
bool print_special = false;
|
| 39 |
bool print_energy = false;
|
| 40 |
bool no_timestamps = true;
|
|
|
|
| 34 |
|
| 35 |
bool speed_up = false;
|
| 36 |
bool translate = false;
|
|
|
|
| 37 |
bool print_special = false;
|
| 38 |
bool print_energy = false;
|
| 39 |
bool no_timestamps = true;
|
examples/talk.wasm/README.md
CHANGED
|
@@ -6,6 +6,8 @@ Talk with an Artificial Intelligence in your browser:
|
|
| 6 |
|
| 7 |
Online demo: https://whisper.ggerganov.com/talk/
|
| 8 |
|
|
|
|
|
|
|
| 9 |
## How it works?
|
| 10 |
|
| 11 |
This demo leverages 2 modern neural network models to create a high-quality voice chat directly in your browser:
|
|
|
|
| 6 |
|
| 7 |
Online demo: https://whisper.ggerganov.com/talk/
|
| 8 |
|
| 9 |
+
Terminal version: [examples/talk](/examples/talk)
|
| 10 |
+
|
| 11 |
## How it works?
|
| 12 |
|
| 13 |
This demo leverages 2 modern neural network models to create a high-quality voice chat directly in your browser:
|
examples/talk/.gitignore
ADDED
|
@@ -0,0 +1 @@
|
|
|
|
|
|
|
| 1 |
+
eleven-labs.py
|
examples/talk/CMakeLists.txt
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
if (WHISPER_SUPPORT_SDL2)
|
| 2 |
+
# talk
|
| 3 |
+
set(TARGET talk)
|
| 4 |
+
add_executable(${TARGET} talk.cpp gpt-2.cpp)
|
| 5 |
+
target_include_directories(${TARGET} PRIVATE ${SDL2_INCLUDE_DIRS})
|
| 6 |
+
target_link_libraries(${TARGET} PRIVATE whisper ${SDL2_LIBRARIES} ${CMAKE_THREAD_LIBS_INIT})
|
| 7 |
+
endif ()
|
examples/talk/README.md
ADDED
|
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# talk
|
| 2 |
+
|
| 3 |
+
Talk with an Artificial Intelligence in your terminal
|
| 4 |
+
|
| 5 |
+
[Demo Talk](https://user-images.githubusercontent.com/1991296/206805012-48e71cc2-588d-4745-8798-c1c70ea3b40d.mp4)
|
| 6 |
+
|
| 7 |
+
Web version: [examples/talk.wasm](/examples/talk.wasm)
|
| 8 |
+
|
| 9 |
+
## Building
|
| 10 |
+
|
| 11 |
+
The `talk` tool depends on SDL2 library to capture audio from the microphone. You can build it like this:
|
| 12 |
+
|
| 13 |
+
```bash
|
| 14 |
+
# Install SDL2 on Linux
|
| 15 |
+
sudo apt-get install libsdl2-dev
|
| 16 |
+
|
| 17 |
+
# Install SDL2 on Mac OS
|
| 18 |
+
brew install sdl2
|
| 19 |
+
|
| 20 |
+
# Build the "talk" executable
|
| 21 |
+
make talk
|
| 22 |
+
|
| 23 |
+
# Run it
|
| 24 |
+
./talk -p Santa
|
| 25 |
+
```
|
| 26 |
+
|
| 27 |
+
To run this, you will need a ggml GPT-2 model: [instructions](https://github.com/ggerganov/ggml/tree/master/examples/gpt-2#downloading-and-converting-the-original-models)
|
| 28 |
+
|
| 29 |
+
Alternatively, you can simply download the smallest ggml GPT-2 117M model (240 MB) like this:
|
| 30 |
+
|
| 31 |
+
```
|
| 32 |
+
wget --quiet --show-progress -O models/ggml-gpt-2-117M.bin https://ggml.ggerganov.com/ggml-model-gpt-2-117M.bin
|
| 33 |
+
```
|
examples/talk/gpt-2.cpp
ADDED
|
@@ -0,0 +1,925 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#include "ggml.h"
|
| 2 |
+
#include "gpt-2.h"
|
| 3 |
+
|
| 4 |
+
#include <cmath>
|
| 5 |
+
#include <cstdio>
|
| 6 |
+
#include <cstring>
|
| 7 |
+
#include <fstream>
|
| 8 |
+
#include <map>
|
| 9 |
+
#include <string>
|
| 10 |
+
#include <thread>
|
| 11 |
+
#include <vector>
|
| 12 |
+
#include <regex>
|
| 13 |
+
#include <random>
|
| 14 |
+
|
| 15 |
+
/////////////////////// GPT-2 BEGIN /////////////////////////
|
| 16 |
+
|
| 17 |
+
//
|
| 18 |
+
// Vocab utils
|
| 19 |
+
//
|
| 20 |
+
|
| 21 |
+
std::vector<gpt_vocab::id> gpt_tokenize(const gpt_vocab & vocab, const std::string & text) {
|
| 22 |
+
std::vector<std::string> words;
|
| 23 |
+
|
| 24 |
+
// first split the text into words
|
| 25 |
+
{
|
| 26 |
+
std::string str = text;
|
| 27 |
+
std::string pat = R"('s|'t|'re|'ve|'m|'ll|'d| ?[[:alpha:]]+| ?[[:digit:]]+| ?[^\s[:alpha:][:digit:]]+|\s+(?!\S)|\s+)";
|
| 28 |
+
|
| 29 |
+
std::regex re(pat);
|
| 30 |
+
std::smatch m;
|
| 31 |
+
|
| 32 |
+
while (std::regex_search(str, m, re)) {
|
| 33 |
+
for (auto x : m) {
|
| 34 |
+
words.push_back(x);
|
| 35 |
+
}
|
| 36 |
+
str = m.suffix();
|
| 37 |
+
}
|
| 38 |
+
}
|
| 39 |
+
|
| 40 |
+
// find the longest tokens that form the words:
|
| 41 |
+
std::vector<gpt_vocab::id> tokens;
|
| 42 |
+
for (const auto & word : words) {
|
| 43 |
+
if (word.size() == 0) continue;
|
| 44 |
+
|
| 45 |
+
int i = 0;
|
| 46 |
+
int n = word.size();
|
| 47 |
+
while (i < n) {
|
| 48 |
+
int j = n;
|
| 49 |
+
while (j > i) {
|
| 50 |
+
auto it = vocab.token_to_id.find(word.substr(i, j-i));
|
| 51 |
+
if (it != vocab.token_to_id.end()) {
|
| 52 |
+
tokens.push_back(it->second);
|
| 53 |
+
i = j;
|
| 54 |
+
break;
|
| 55 |
+
}
|
| 56 |
+
--j;
|
| 57 |
+
}
|
| 58 |
+
if (i == n) {
|
| 59 |
+
break;
|
| 60 |
+
}
|
| 61 |
+
if (j == i) {
|
| 62 |
+
auto sub = word.substr(i, 1);
|
| 63 |
+
if (vocab.token_to_id.find(sub) != vocab.token_to_id.end()) {
|
| 64 |
+
tokens.push_back(vocab.token_to_id.at(sub));
|
| 65 |
+
} else {
|
| 66 |
+
fprintf(stderr, "%s: unknown token '%s'\n", __func__, sub.data());
|
| 67 |
+
}
|
| 68 |
+
++i;
|
| 69 |
+
}
|
| 70 |
+
}
|
| 71 |
+
}
|
| 72 |
+
|
| 73 |
+
return tokens;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
gpt_vocab::id gpt_sample_top_k_top_p(
|
| 77 |
+
const gpt_vocab & vocab,
|
| 78 |
+
const float * logits,
|
| 79 |
+
int top_k,
|
| 80 |
+
double top_p,
|
| 81 |
+
double temp,
|
| 82 |
+
std::mt19937 & rng) {
|
| 83 |
+
int n_logits = vocab.id_to_token.size();
|
| 84 |
+
|
| 85 |
+
std::vector<std::pair<double, gpt_vocab::id>> logits_id;
|
| 86 |
+
logits_id.reserve(n_logits);
|
| 87 |
+
|
| 88 |
+
for (int i = 0; i < n_logits; i++) {
|
| 89 |
+
logits_id.push_back(std::make_pair(logits[i], i));
|
| 90 |
+
}
|
| 91 |
+
|
| 92 |
+
// find the top K tokens
|
| 93 |
+
std::partial_sort(
|
| 94 |
+
logits_id.begin(),
|
| 95 |
+
logits_id.begin() + top_k, logits_id.end(),
|
| 96 |
+
[](const std::pair<double, gpt_vocab::id> & a, const std::pair<double, gpt_vocab::id> & b) {
|
| 97 |
+
return a.first > b.first;
|
| 98 |
+
});
|
| 99 |
+
|
| 100 |
+
logits_id.resize(top_k);
|
| 101 |
+
|
| 102 |
+
// normalize
|
| 103 |
+
{
|
| 104 |
+
double sum = 0.0f;
|
| 105 |
+
for (int i = 0; i < (int)logits_id.size(); i++) {
|
| 106 |
+
sum += logits_id[i].first;
|
| 107 |
+
}
|
| 108 |
+
|
| 109 |
+
sum = 1.0/sum;
|
| 110 |
+
for (int i = 0; i < (int)logits_id.size(); i++) {
|
| 111 |
+
logits_id[i].first *= sum;
|
| 112 |
+
}
|
| 113 |
+
}
|
| 114 |
+
|
| 115 |
+
if (top_p < 1.0f) {
|
| 116 |
+
{
|
| 117 |
+
double cumsum = 0.0f;
|
| 118 |
+
for (int i = 0; i < top_k; i++) {
|
| 119 |
+
cumsum += logits_id[i].first;
|
| 120 |
+
if (cumsum >= top_p) {
|
| 121 |
+
logits_id.resize(i+1);
|
| 122 |
+
break;
|
| 123 |
+
}
|
| 124 |
+
}
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
// normalize again
|
| 128 |
+
{
|
| 129 |
+
double sum = 0.0f;
|
| 130 |
+
for (int i = 0; i < (int)logits_id.size(); i++) {
|
| 131 |
+
sum += logits_id[i].first;
|
| 132 |
+
}
|
| 133 |
+
|
| 134 |
+
sum = 1.0/sum;
|
| 135 |
+
for (int i = 0; i < (int)logits_id.size(); i++) {
|
| 136 |
+
logits_id[i].first *= sum;
|
| 137 |
+
}
|
| 138 |
+
}
|
| 139 |
+
}
|
| 140 |
+
|
| 141 |
+
//printf("\n");
|
| 142 |
+
//for (int i = 0; i < (int)logits_id.size(); i++) {
|
| 143 |
+
// printf("%d: '%s' %f\n", i, vocab.id_to_token.at(logits_id[i].second).c_str(), logits_id[i].first);
|
| 144 |
+
//}
|
| 145 |
+
//exit(0);
|
| 146 |
+
|
| 147 |
+
// sample from the obtained distribution
|
| 148 |
+
std::vector<double> probs;
|
| 149 |
+
probs.reserve(logits_id.size());
|
| 150 |
+
|
| 151 |
+
for (int i = 0; i < (int) logits_id.size(); i++) {
|
| 152 |
+
probs.push_back(logits_id[i].first);
|
| 153 |
+
}
|
| 154 |
+
|
| 155 |
+
std::discrete_distribution<> dist(probs.begin(), probs.end());
|
| 156 |
+
int idx = dist(rng);
|
| 157 |
+
|
| 158 |
+
return logits_id[idx].second;
|
| 159 |
+
}
|
| 160 |
+
|
| 161 |
+
// default hparams (GPT-2 117M)
|
| 162 |
+
struct gpt2_hparams {
|
| 163 |
+
int32_t n_vocab = 50257;
|
| 164 |
+
int32_t n_ctx = 1024;
|
| 165 |
+
int32_t n_embd = 768;
|
| 166 |
+
int32_t n_head = 12;
|
| 167 |
+
int32_t n_layer = 12;
|
| 168 |
+
int32_t f16 = 1;
|
| 169 |
+
};
|
| 170 |
+
|
| 171 |
+
struct gpt2_layer {
|
| 172 |
+
// normalization
|
| 173 |
+
struct ggml_tensor * ln_1_g;
|
| 174 |
+
struct ggml_tensor * ln_1_b;
|
| 175 |
+
|
| 176 |
+
struct ggml_tensor * ln_2_g;
|
| 177 |
+
struct ggml_tensor * ln_2_b;
|
| 178 |
+
|
| 179 |
+
// attention
|
| 180 |
+
struct ggml_tensor * c_attn_attn_w;
|
| 181 |
+
struct ggml_tensor * c_attn_attn_b;
|
| 182 |
+
|
| 183 |
+
struct ggml_tensor * c_attn_proj_w;
|
| 184 |
+
struct ggml_tensor * c_attn_proj_b;
|
| 185 |
+
|
| 186 |
+
// mlp
|
| 187 |
+
struct ggml_tensor * c_mlp_fc_w;
|
| 188 |
+
struct ggml_tensor * c_mlp_fc_b;
|
| 189 |
+
|
| 190 |
+
struct ggml_tensor * c_mlp_proj_w_trans; // transposed for efficiency
|
| 191 |
+
struct ggml_tensor * c_mlp_proj_b;
|
| 192 |
+
};
|
| 193 |
+
|
| 194 |
+
struct gpt2_model {
|
| 195 |
+
gpt2_hparams hparams;
|
| 196 |
+
|
| 197 |
+
// normalization
|
| 198 |
+
struct ggml_tensor * ln_f_g;
|
| 199 |
+
struct ggml_tensor * ln_f_b;
|
| 200 |
+
|
| 201 |
+
struct ggml_tensor * wte; // position embedding
|
| 202 |
+
struct ggml_tensor * wpe; // token embedding
|
| 203 |
+
|
| 204 |
+
std::vector<gpt2_layer> layers;
|
| 205 |
+
|
| 206 |
+
// key + value memory
|
| 207 |
+
struct ggml_tensor * memory_k;
|
| 208 |
+
struct ggml_tensor * memory_v;
|
| 209 |
+
|
| 210 |
+
//
|
| 211 |
+
struct ggml_context * ctx;
|
| 212 |
+
std::map<std::string, struct ggml_tensor *> tensors;
|
| 213 |
+
};
|
| 214 |
+
|
| 215 |
+
// load the model's weights from a file
|
| 216 |
+
bool gpt2_model_load(const std::string & fname, gpt2_model & model, gpt_vocab & vocab) {
|
| 217 |
+
printf("%s: loading model from '%s'\n", __func__, fname.c_str());
|
| 218 |
+
|
| 219 |
+
auto fin = std::ifstream(fname, std::ios::binary);
|
| 220 |
+
if (!fin) {
|
| 221 |
+
fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str());
|
| 222 |
+
return false;
|
| 223 |
+
}
|
| 224 |
+
|
| 225 |
+
// verify magic
|
| 226 |
+
{
|
| 227 |
+
uint32_t magic;
|
| 228 |
+
fin.read((char *) &magic, sizeof(magic));
|
| 229 |
+
if (magic != 0x67676d6c) {
|
| 230 |
+
fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str());
|
| 231 |
+
return false;
|
| 232 |
+
}
|
| 233 |
+
}
|
| 234 |
+
|
| 235 |
+
// load hparams
|
| 236 |
+
{
|
| 237 |
+
auto & hparams = model.hparams;
|
| 238 |
+
|
| 239 |
+
fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab));
|
| 240 |
+
fin.read((char *) &hparams.n_ctx, sizeof(hparams.n_ctx));
|
| 241 |
+
fin.read((char *) &hparams.n_embd, sizeof(hparams.n_embd));
|
| 242 |
+
fin.read((char *) &hparams.n_head, sizeof(hparams.n_head));
|
| 243 |
+
fin.read((char *) &hparams.n_layer, sizeof(hparams.n_layer));
|
| 244 |
+
fin.read((char *) &hparams.f16, sizeof(hparams.f16));
|
| 245 |
+
|
| 246 |
+
printf("%s: n_vocab = %d\n", __func__, hparams.n_vocab);
|
| 247 |
+
printf("%s: n_ctx = %d\n", __func__, hparams.n_ctx);
|
| 248 |
+
printf("%s: n_embd = %d\n", __func__, hparams.n_embd);
|
| 249 |
+
printf("%s: n_head = %d\n", __func__, hparams.n_head);
|
| 250 |
+
printf("%s: n_layer = %d\n", __func__, hparams.n_layer);
|
| 251 |
+
printf("%s: f16 = %d\n", __func__, hparams.f16);
|
| 252 |
+
}
|
| 253 |
+
|
| 254 |
+
// load vocab
|
| 255 |
+
{
|
| 256 |
+
int32_t n_vocab = 0;
|
| 257 |
+
fin.read((char *) &n_vocab, sizeof(n_vocab));
|
| 258 |
+
|
| 259 |
+
if (n_vocab != model.hparams.n_vocab) {
|
| 260 |
+
fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n",
|
| 261 |
+
__func__, fname.c_str(), n_vocab, model.hparams.n_vocab);
|
| 262 |
+
return false;
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
std::string word;
|
| 266 |
+
for (int i = 0; i < n_vocab; i++) {
|
| 267 |
+
uint32_t len;
|
| 268 |
+
fin.read((char *) &len, sizeof(len));
|
| 269 |
+
|
| 270 |
+
word.resize(len);
|
| 271 |
+
fin.read((char *) word.data(), len);
|
| 272 |
+
|
| 273 |
+
vocab.token_to_id[word] = i;
|
| 274 |
+
vocab.id_to_token[i] = word;
|
| 275 |
+
}
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
// for the big tensors, we have the option to store the data in 16-bit floats
|
| 279 |
+
// in order to save memory and also to speed up the computation
|
| 280 |
+
const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32;
|
| 281 |
+
|
| 282 |
+
auto & ctx = model.ctx;
|
| 283 |
+
|
| 284 |
+
size_t ctx_size = 0;
|
| 285 |
+
|
| 286 |
+
{
|
| 287 |
+
const auto & hparams = model.hparams;
|
| 288 |
+
|
| 289 |
+
const int n_embd = hparams.n_embd;
|
| 290 |
+
const int n_layer = hparams.n_layer;
|
| 291 |
+
const int n_ctx = hparams.n_ctx;
|
| 292 |
+
const int n_vocab = hparams.n_vocab;
|
| 293 |
+
|
| 294 |
+
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_g
|
| 295 |
+
ctx_size += n_embd*ggml_type_size(GGML_TYPE_F32); // ln_f_b
|
| 296 |
+
|
| 297 |
+
ctx_size += n_vocab*n_embd*ggml_type_size(wtype); // wte
|
| 298 |
+
ctx_size += n_ctx*n_embd*ggml_type_size(GGML_TYPE_F32); // wpe
|
| 299 |
+
|
| 300 |
+
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_g
|
| 301 |
+
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_1_b
|
| 302 |
+
|
| 303 |
+
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_g
|
| 304 |
+
ctx_size += n_layer*(n_embd*ggml_type_size(GGML_TYPE_F32)); // ln_2_b
|
| 305 |
+
|
| 306 |
+
ctx_size += n_layer*(3*n_embd*n_embd*ggml_type_size(wtype)); // c_attn_attn_w
|
| 307 |
+
ctx_size += n_layer*( 3*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_attn_b
|
| 308 |
+
|
| 309 |
+
ctx_size += n_layer*(n_embd*n_embd*ggml_type_size(wtype)); // c_attn_proj_w
|
| 310 |
+
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_attn_proj_b
|
| 311 |
+
|
| 312 |
+
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_fc_w
|
| 313 |
+
ctx_size += n_layer*( 4*n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_fc_b
|
| 314 |
+
|
| 315 |
+
ctx_size += n_layer*(4*n_embd*n_embd*ggml_type_size(wtype)); // c_mlp_proj_w
|
| 316 |
+
ctx_size += n_layer*( n_embd*ggml_type_size(GGML_TYPE_F32)); // c_mlp_proj_b
|
| 317 |
+
|
| 318 |
+
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_k
|
| 319 |
+
ctx_size += n_ctx*n_layer*n_embd*ggml_type_size(GGML_TYPE_F32); // memory_v
|
| 320 |
+
|
| 321 |
+
ctx_size += (6 + 12*n_layer)*256; // object overhead
|
| 322 |
+
|
| 323 |
+
printf("%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0));
|
| 324 |
+
}
|
| 325 |
+
|
| 326 |
+
// create the ggml context
|
| 327 |
+
{
|
| 328 |
+
struct ggml_init_params params = {
|
| 329 |
+
.mem_size = ctx_size,
|
| 330 |
+
.mem_buffer = NULL,
|
| 331 |
+
};
|
| 332 |
+
|
| 333 |
+
model.ctx = ggml_init(params);
|
| 334 |
+
if (!model.ctx) {
|
| 335 |
+
fprintf(stderr, "%s: ggml_init() failed\n", __func__);
|
| 336 |
+
return false;
|
| 337 |
+
}
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
// prepare memory for the weights
|
| 341 |
+
{
|
| 342 |
+
const auto & hparams = model.hparams;
|
| 343 |
+
|
| 344 |
+
const int n_embd = hparams.n_embd;
|
| 345 |
+
const int n_layer = hparams.n_layer;
|
| 346 |
+
const int n_ctx = hparams.n_ctx;
|
| 347 |
+
const int n_vocab = hparams.n_vocab;
|
| 348 |
+
|
| 349 |
+
model.layers.resize(n_layer);
|
| 350 |
+
|
| 351 |
+
model.ln_f_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 352 |
+
model.ln_f_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 353 |
+
|
| 354 |
+
model.wte = ggml_new_tensor_2d(ctx, wtype, n_embd, n_vocab);
|
| 355 |
+
model.wpe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_embd, n_ctx);
|
| 356 |
+
|
| 357 |
+
// map by name
|
| 358 |
+
model.tensors["model/ln_f/g"] = model.ln_f_g;
|
| 359 |
+
model.tensors["model/ln_f/b"] = model.ln_f_b;
|
| 360 |
+
|
| 361 |
+
model.tensors["model/wte"] = model.wte;
|
| 362 |
+
model.tensors["model/wpe"] = model.wpe;
|
| 363 |
+
|
| 364 |
+
for (int i = 0; i < n_layer; ++i) {
|
| 365 |
+
auto & layer = model.layers[i];
|
| 366 |
+
|
| 367 |
+
layer.ln_1_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 368 |
+
layer.ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 369 |
+
|
| 370 |
+
layer.ln_2_g = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 371 |
+
layer.ln_2_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 372 |
+
|
| 373 |
+
layer.c_attn_attn_w = ggml_new_tensor_2d(ctx, wtype, 3*n_embd, n_embd);
|
| 374 |
+
layer.c_attn_attn_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 3*n_embd);
|
| 375 |
+
|
| 376 |
+
layer.c_attn_proj_w = ggml_new_tensor_2d(ctx, wtype, n_embd, n_embd);
|
| 377 |
+
layer.c_attn_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 378 |
+
|
| 379 |
+
layer.c_mlp_fc_w = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
| 380 |
+
layer.c_mlp_fc_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_embd);
|
| 381 |
+
|
| 382 |
+
layer.c_mlp_proj_w_trans = ggml_new_tensor_2d(ctx, wtype, 4*n_embd, n_embd);
|
| 383 |
+
layer.c_mlp_proj_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_embd);
|
| 384 |
+
|
| 385 |
+
// map by name
|
| 386 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_1/g"] = layer.ln_1_g;
|
| 387 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_1/b"] = layer.ln_1_b;
|
| 388 |
+
|
| 389 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_2/g"] = layer.ln_2_g;
|
| 390 |
+
model.tensors["model/h" + std::to_string(i) + "/ln_2/b"] = layer.ln_2_b;
|
| 391 |
+
|
| 392 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/w"] = layer.c_attn_attn_w;
|
| 393 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_attn/b"] = layer.c_attn_attn_b;
|
| 394 |
+
|
| 395 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/w"] = layer.c_attn_proj_w;
|
| 396 |
+
model.tensors["model/h" + std::to_string(i) + "/attn/c_proj/b"] = layer.c_attn_proj_b;
|
| 397 |
+
|
| 398 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/w"] = layer.c_mlp_fc_w;
|
| 399 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_fc/b"] = layer.c_mlp_fc_b;
|
| 400 |
+
|
| 401 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/w"] = layer.c_mlp_proj_w_trans;
|
| 402 |
+
model.tensors["model/h" + std::to_string(i) + "/mlp/c_proj/b"] = layer.c_mlp_proj_b;
|
| 403 |
+
}
|
| 404 |
+
}
|
| 405 |
+
|
| 406 |
+
// key + value memory
|
| 407 |
+
{
|
| 408 |
+
const auto & hparams = model.hparams;
|
| 409 |
+
|
| 410 |
+
const int n_embd = hparams.n_embd;
|
| 411 |
+
const int n_layer = hparams.n_layer;
|
| 412 |
+
const int n_ctx = hparams.n_ctx;
|
| 413 |
+
|
| 414 |
+
const int n_mem = n_layer*n_ctx;
|
| 415 |
+
const int n_elements = n_embd*n_mem;
|
| 416 |
+
|
| 417 |
+
model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
| 418 |
+
model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_elements);
|
| 419 |
+
|
| 420 |
+
const size_t memory_size = ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v);
|
| 421 |
+
|
| 422 |
+
printf("%s: memory size = %8.2f MB, n_mem = %d\n", __func__, memory_size/1024.0/1024.0, n_mem);
|
| 423 |
+
}
|
| 424 |
+
|
| 425 |
+
// load weights
|
| 426 |
+
{
|
| 427 |
+
size_t total_size = 0;
|
| 428 |
+
|
| 429 |
+
while (true) {
|
| 430 |
+
int32_t n_dims;
|
| 431 |
+
int32_t length;
|
| 432 |
+
int32_t ftype;
|
| 433 |
+
|
| 434 |
+
fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims));
|
| 435 |
+
fin.read(reinterpret_cast<char *>(&length), sizeof(length));
|
| 436 |
+
fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype));
|
| 437 |
+
|
| 438 |
+
if (fin.eof()) {
|
| 439 |
+
break;
|
| 440 |
+
}
|
| 441 |
+
|
| 442 |
+
int32_t nelements = 1;
|
| 443 |
+
int32_t ne[2] = { 1, 1 };
|
| 444 |
+
for (int i = 0; i < n_dims; ++i) {
|
| 445 |
+
fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i]));
|
| 446 |
+
nelements *= ne[i];
|
| 447 |
+
}
|
| 448 |
+
|
| 449 |
+
std::string name(length, 0);
|
| 450 |
+
fin.read(&name[0], length);
|
| 451 |
+
|
| 452 |
+
if (model.tensors.find(name.data()) == model.tensors.end()) {
|
| 453 |
+
fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data());
|
| 454 |
+
return false;
|
| 455 |
+
}
|
| 456 |
+
|
| 457 |
+
auto tensor = model.tensors[name.data()];
|
| 458 |
+
if (ggml_nelements(tensor) != nelements) {
|
| 459 |
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data());
|
| 460 |
+
return false;
|
| 461 |
+
}
|
| 462 |
+
|
| 463 |
+
if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1]) {
|
| 464 |
+
fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d], expected [%d, %d]\n",
|
| 465 |
+
__func__, name.data(), tensor->ne[0], tensor->ne[1], ne[0], ne[1]);
|
| 466 |
+
return false;
|
| 467 |
+
}
|
| 468 |
+
|
| 469 |
+
const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t);
|
| 470 |
+
|
| 471 |
+
if (nelements*bpe != ggml_nbytes(tensor)) {
|
| 472 |
+
fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n",
|
| 473 |
+
__func__, name.data(), ggml_nbytes(tensor), nelements*bpe);
|
| 474 |
+
return false;
|
| 475 |
+
}
|
| 476 |
+
|
| 477 |
+
fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor));
|
| 478 |
+
|
| 479 |
+
//printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0);
|
| 480 |
+
total_size += ggml_nbytes(tensor);
|
| 481 |
+
}
|
| 482 |
+
|
| 483 |
+
printf("%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0);
|
| 484 |
+
}
|
| 485 |
+
|
| 486 |
+
fin.close();
|
| 487 |
+
|
| 488 |
+
return true;
|
| 489 |
+
}
|
| 490 |
+
|
| 491 |
+
// evaluate the transformer
|
| 492 |
+
//
|
| 493 |
+
// - model: the model
|
| 494 |
+
// - n_threads: number of threads to use
|
| 495 |
+
// - n_past: the context size so far
|
| 496 |
+
// - embd_inp: the embeddings of the tokens in the context
|
| 497 |
+
// - embd_w: the predicted probabilities of the next token
|
| 498 |
+
//
|
| 499 |
+
bool gpt2_eval(
|
| 500 |
+
const gpt2_model & model,
|
| 501 |
+
const int n_threads,
|
| 502 |
+
const int n_past,
|
| 503 |
+
const std::vector<gpt_vocab::id> & embd_inp,
|
| 504 |
+
std::vector<float> & embd_w,
|
| 505 |
+
size_t & mem_per_token) {
|
| 506 |
+
const int N = embd_inp.size();
|
| 507 |
+
|
| 508 |
+
const auto & hparams = model.hparams;
|
| 509 |
+
|
| 510 |
+
const int n_embd = hparams.n_embd;
|
| 511 |
+
const int n_layer = hparams.n_layer;
|
| 512 |
+
const int n_ctx = hparams.n_ctx;
|
| 513 |
+
const int n_head = hparams.n_head;
|
| 514 |
+
const int n_vocab = hparams.n_vocab;
|
| 515 |
+
|
| 516 |
+
static size_t buf_size = 5640ull*1024*1024;
|
| 517 |
+
static void * buf = malloc(buf_size);
|
| 518 |
+
|
| 519 |
+
if (mem_per_token > 0 && mem_per_token*N > buf_size) {
|
| 520 |
+
const size_t buf_size_new = 1.1*(mem_per_token*N); // add 10% to account for ggml object overhead
|
| 521 |
+
printf("\n%s: reallocating buffer from %zu to %zu bytes\n", __func__, buf_size, buf_size_new);
|
| 522 |
+
|
| 523 |
+
// reallocate
|
| 524 |
+
buf_size = buf_size_new;
|
| 525 |
+
buf = realloc(buf, buf_size);
|
| 526 |
+
if (buf == nullptr) {
|
| 527 |
+
fprintf(stderr, "%s: failed to allocate %zu bytes\n", __func__, buf_size);
|
| 528 |
+
return false;
|
| 529 |
+
}
|
| 530 |
+
}
|
| 531 |
+
|
| 532 |
+
struct ggml_init_params params = {
|
| 533 |
+
.mem_size = buf_size,
|
| 534 |
+
.mem_buffer = buf,
|
| 535 |
+
};
|
| 536 |
+
|
| 537 |
+
struct ggml_context * ctx0 = ggml_init(params);
|
| 538 |
+
struct ggml_cgraph gf = { .n_threads = n_threads };
|
| 539 |
+
|
| 540 |
+
struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
| 541 |
+
memcpy(embd->data, embd_inp.data(), N*ggml_element_size(embd));
|
| 542 |
+
|
| 543 |
+
struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N);
|
| 544 |
+
for (int i = 0; i < N; ++i) {
|
| 545 |
+
((int32_t *) position->data)[i] = n_past + i;
|
| 546 |
+
}
|
| 547 |
+
|
| 548 |
+
// wte + wpe
|
| 549 |
+
struct ggml_tensor * inpL =
|
| 550 |
+
ggml_add(ctx0,
|
| 551 |
+
ggml_get_rows(ctx0, model.wte, embd),
|
| 552 |
+
ggml_get_rows(ctx0, model.wpe, position));
|
| 553 |
+
|
| 554 |
+
for (int il = 0; il < n_layer; ++il) {
|
| 555 |
+
struct ggml_tensor * cur;
|
| 556 |
+
|
| 557 |
+
// norm
|
| 558 |
+
{
|
| 559 |
+
// [ 768, N]
|
| 560 |
+
cur = ggml_norm(ctx0, inpL);
|
| 561 |
+
|
| 562 |
+
// cur = ln_1_g*cur + ln_1_b
|
| 563 |
+
// [ 768, N]
|
| 564 |
+
cur = ggml_add(ctx0,
|
| 565 |
+
ggml_mul(ctx0,
|
| 566 |
+
ggml_repeat(ctx0, model.layers[il].ln_1_g, cur),
|
| 567 |
+
cur),
|
| 568 |
+
ggml_repeat(ctx0, model.layers[il].ln_1_b, cur));
|
| 569 |
+
}
|
| 570 |
+
|
| 571 |
+
// attn
|
| 572 |
+
// [2304, 768] - model.layers[il].c_attn_attn_w
|
| 573 |
+
// [2304, 1] - model.layers[il].c_attn_attn_b
|
| 574 |
+
// [ 768, N] - cur (in)
|
| 575 |
+
// [2304, N] - cur (out)
|
| 576 |
+
//
|
| 577 |
+
// cur = attn_w*cur + attn_b
|
| 578 |
+
// [2304, N]
|
| 579 |
+
{
|
| 580 |
+
cur = ggml_mul_mat(ctx0,
|
| 581 |
+
ggml_transpose(ctx0, model.layers[il].c_attn_attn_w),
|
| 582 |
+
cur);
|
| 583 |
+
|
| 584 |
+
cur = ggml_add(ctx0,
|
| 585 |
+
ggml_repeat(ctx0, model.layers[il].c_attn_attn_b, cur),
|
| 586 |
+
cur);
|
| 587 |
+
}
|
| 588 |
+
|
| 589 |
+
// self-attention
|
| 590 |
+
{
|
| 591 |
+
struct ggml_tensor * Qcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 0*sizeof(float)*n_embd);
|
| 592 |
+
struct ggml_tensor * Kcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 1*sizeof(float)*n_embd);
|
| 593 |
+
struct ggml_tensor * Vcur = ggml_view_2d(ctx0, cur, n_embd, N, cur->nb[1], 2*sizeof(float)*n_embd);
|
| 594 |
+
|
| 595 |
+
// store key and value to memory
|
| 596 |
+
if (N >= 1) {
|
| 597 |
+
struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_k, N*n_embd, (ggml_element_size(model.memory_k)*n_embd)*(il*n_ctx + n_past));
|
| 598 |
+
struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_v, N*n_embd, (ggml_element_size(model.memory_v)*n_embd)*(il*n_ctx + n_past));
|
| 599 |
+
|
| 600 |
+
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcur, k));
|
| 601 |
+
ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcur, v));
|
| 602 |
+
}
|
| 603 |
+
|
| 604 |
+
// Q = Qcur.contiguous().view(n_embd/n_head, n_head, N).permute(0, 2, 1, 3)
|
| 605 |
+
// [64, N, 12]
|
| 606 |
+
struct ggml_tensor * Q =
|
| 607 |
+
ggml_permute(ctx0,
|
| 608 |
+
ggml_cpy(ctx0,
|
| 609 |
+
Qcur,
|
| 610 |
+
ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_embd/n_head, n_head, N)),
|
| 611 |
+
0, 2, 1, 3);
|
| 612 |
+
|
| 613 |
+
// K = Kmem.view(n_embd/n_head, n_head, n_past + N).permute(0, 2, 1, 3)
|
| 614 |
+
// [64, n_past + N, 12]
|
| 615 |
+
struct ggml_tensor * K =
|
| 616 |
+
ggml_permute(ctx0,
|
| 617 |
+
ggml_reshape_3d(ctx0,
|
| 618 |
+
ggml_view_1d(ctx0, model.memory_k, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_k)*n_embd),
|
| 619 |
+
n_embd/n_head, n_head, n_past + N),
|
| 620 |
+
0, 2, 1, 3);
|
| 621 |
+
|
| 622 |
+
// GG: flash attention
|
| 623 |
+
//struct ggml_tensor * V =
|
| 624 |
+
// ggml_cpy(ctx0,
|
| 625 |
+
// ggml_permute(ctx0,
|
| 626 |
+
// ggml_reshape_3d(ctx0,
|
| 627 |
+
// ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
| 628 |
+
// n_embd/n_head, n_head, n_past + N),
|
| 629 |
+
// 1, 2, 0, 3),
|
| 630 |
+
// ggml_new_tensor_3d(ctx0, GGML_TYPE_F32, n_past + N, n_embd/n_head, n_head));
|
| 631 |
+
|
| 632 |
+
//struct ggml_tensor * KQV = ggml_flash_attn(ctx0, Q, K, V, true);
|
| 633 |
+
|
| 634 |
+
// K * Q
|
| 635 |
+
// [n_past + N, N, 12]
|
| 636 |
+
struct ggml_tensor * KQ = ggml_mul_mat(ctx0, K, Q);
|
| 637 |
+
|
| 638 |
+
// KQ_scaled = KQ / sqrt(n_embd/n_head)
|
| 639 |
+
// [n_past + N, N, 12]
|
| 640 |
+
struct ggml_tensor * KQ_scaled =
|
| 641 |
+
ggml_scale(ctx0,
|
| 642 |
+
KQ,
|
| 643 |
+
ggml_new_f32(ctx0, 1.0f/sqrt(float(n_embd)/n_head))
|
| 644 |
+
);
|
| 645 |
+
|
| 646 |
+
// KQ_masked = mask_past(KQ_scaled)
|
| 647 |
+
// [n_past + N, N, 12]
|
| 648 |
+
struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctx0, KQ_scaled, n_past);
|
| 649 |
+
|
| 650 |
+
// KQ = soft_max(KQ_masked)
|
| 651 |
+
// [n_past + N, N, 12]
|
| 652 |
+
struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctx0, KQ_masked);
|
| 653 |
+
|
| 654 |
+
// V_trans = Vmem.view(n_embd/n_head, n_head, n_past + N).permute(1, 2, 0, 3).contiguous()
|
| 655 |
+
// [n_past + N, 64, 12]
|
| 656 |
+
struct ggml_tensor * V_trans =
|
| 657 |
+
ggml_permute(ctx0,
|
| 658 |
+
ggml_reshape_3d(ctx0,
|
| 659 |
+
ggml_view_1d(ctx0, model.memory_v, (n_past + N)*n_embd, il*n_ctx*ggml_element_size(model.memory_v)*n_embd),
|
| 660 |
+
n_embd/n_head, n_head, n_past + N),
|
| 661 |
+
1, 2, 0, 3);
|
| 662 |
+
|
| 663 |
+
// KQV = transpose(V) * KQ_soft_max
|
| 664 |
+
// [64, N, 12]
|
| 665 |
+
struct ggml_tensor * KQV = ggml_mul_mat(ctx0, V_trans, KQ_soft_max);
|
| 666 |
+
|
| 667 |
+
// KQV_merged = KQV.permute(0, 2, 1, 3)
|
| 668 |
+
// [64, 12, N]
|
| 669 |
+
struct ggml_tensor * KQV_merged = ggml_permute(ctx0, KQV, 0, 2, 1, 3);
|
| 670 |
+
|
| 671 |
+
// cur = KQV_merged.contiguous().view(n_embd, N)
|
| 672 |
+
// [768, N]
|
| 673 |
+
cur = ggml_cpy(ctx0,
|
| 674 |
+
KQV_merged,
|
| 675 |
+
ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, n_embd, N));
|
| 676 |
+
}
|
| 677 |
+
|
| 678 |
+
// projection
|
| 679 |
+
// [ 768, 768] - model.layers[il].c_attn_proj_w
|
| 680 |
+
// [ 768, 1] - model.layers[il].c_attn_proj_b
|
| 681 |
+
// [ 768, N] - cur (in)
|
| 682 |
+
// [ 768, N] - cur (out)
|
| 683 |
+
//
|
| 684 |
+
// cur = proj_w*cur + proj_b
|
| 685 |
+
// [768, N]
|
| 686 |
+
{
|
| 687 |
+
cur = ggml_mul_mat(ctx0,
|
| 688 |
+
ggml_transpose(ctx0, model.layers[il].c_attn_proj_w),
|
| 689 |
+
cur);
|
| 690 |
+
|
| 691 |
+
cur = ggml_add(ctx0,
|
| 692 |
+
ggml_repeat(ctx0, model.layers[il].c_attn_proj_b, cur),
|
| 693 |
+
cur);
|
| 694 |
+
}
|
| 695 |
+
|
| 696 |
+
// add the input
|
| 697 |
+
cur = ggml_add(ctx0, cur, inpL);
|
| 698 |
+
|
| 699 |
+
struct ggml_tensor * inpFF = cur;
|
| 700 |
+
|
| 701 |
+
// feed-forward network
|
| 702 |
+
{
|
| 703 |
+
// norm
|
| 704 |
+
{
|
| 705 |
+
cur = ggml_norm(ctx0, inpFF);
|
| 706 |
+
|
| 707 |
+
// cur = ln_2_g*cur + ln_2_b
|
| 708 |
+
// [ 768, N]
|
| 709 |
+
cur = ggml_add(ctx0,
|
| 710 |
+
ggml_mul(ctx0,
|
| 711 |
+
ggml_repeat(ctx0, model.layers[il].ln_2_g, cur),
|
| 712 |
+
cur),
|
| 713 |
+
ggml_repeat(ctx0, model.layers[il].ln_2_b, cur));
|
| 714 |
+
}
|
| 715 |
+
|
| 716 |
+
// fully connected
|
| 717 |
+
// [3072, 768] - model.layers[il].c_mlp_fc_w
|
| 718 |
+
// [3072, 1] - model.layers[il].c_mlp_fc_b
|
| 719 |
+
// [ 768, N] - cur (in)
|
| 720 |
+
// [3072, N] - cur (out)
|
| 721 |
+
//
|
| 722 |
+
// cur = fc_w*cur + fc_b
|
| 723 |
+
// [3072, N]
|
| 724 |
+
cur = ggml_mul_mat(ctx0,
|
| 725 |
+
ggml_transpose(ctx0, model.layers[il].c_mlp_fc_w),
|
| 726 |
+
cur);
|
| 727 |
+
|
| 728 |
+
cur = ggml_add(ctx0,
|
| 729 |
+
ggml_repeat(ctx0, model.layers[il].c_mlp_fc_b, cur),
|
| 730 |
+
cur);
|
| 731 |
+
|
| 732 |
+
// GELU activation
|
| 733 |
+
// [3072, N]
|
| 734 |
+
cur = ggml_gelu(ctx0, cur);
|
| 735 |
+
|
| 736 |
+
// projection
|
| 737 |
+
// [ 768, 3072] - model.layers[il].c_mlp_proj_w
|
| 738 |
+
// [ 768, 1] - model.layers[il].c_mlp_proj_b
|
| 739 |
+
// [3072, N] - cur (in)
|
| 740 |
+
// [ 768, N] - cur (out)
|
| 741 |
+
//
|
| 742 |
+
// cur = proj_w*cur + proj_b
|
| 743 |
+
// [768, N]
|
| 744 |
+
cur = ggml_mul_mat(ctx0,
|
| 745 |
+
model.layers[il].c_mlp_proj_w_trans,
|
| 746 |
+
cur);
|
| 747 |
+
|
| 748 |
+
cur = ggml_add(ctx0,
|
| 749 |
+
ggml_repeat(ctx0, model.layers[il].c_mlp_proj_b, cur),
|
| 750 |
+
cur);
|
| 751 |
+
}
|
| 752 |
+
|
| 753 |
+
// input for next layer
|
| 754 |
+
inpL = ggml_add(ctx0, cur, inpFF);
|
| 755 |
+
}
|
| 756 |
+
|
| 757 |
+
// norm
|
| 758 |
+
{
|
| 759 |
+
// [ 768, N]
|
| 760 |
+
inpL = ggml_norm(ctx0, inpL);
|
| 761 |
+
|
| 762 |
+
// inpL = ln_f_g*inpL + ln_f_b
|
| 763 |
+
// [ 768, N]
|
| 764 |
+
inpL = ggml_add(ctx0,
|
| 765 |
+
ggml_mul(ctx0,
|
| 766 |
+
ggml_repeat(ctx0, model.ln_f_g, inpL),
|
| 767 |
+
inpL),
|
| 768 |
+
ggml_repeat(ctx0, model.ln_f_b, inpL));
|
| 769 |
+
}
|
| 770 |
+
|
| 771 |
+
// inpL = WTE * inpL
|
| 772 |
+
// [ 768, 50257] - model.wte
|
| 773 |
+
// [ 768, N] - inpL
|
| 774 |
+
inpL = ggml_mul_mat(ctx0, model.wte, inpL);
|
| 775 |
+
|
| 776 |
+
// logits -> probs
|
| 777 |
+
inpL = ggml_soft_max(ctx0, inpL);
|
| 778 |
+
|
| 779 |
+
// run the computation
|
| 780 |
+
ggml_build_forward_expand(&gf, inpL);
|
| 781 |
+
ggml_graph_compute (ctx0, &gf);
|
| 782 |
+
|
| 783 |
+
//if (n_past%100 == 0) {
|
| 784 |
+
// ggml_graph_print (&gf);
|
| 785 |
+
// ggml_graph_dump_dot(&gf, NULL, "gpt-2.dot");
|
| 786 |
+
//}
|
| 787 |
+
|
| 788 |
+
//embd_w.resize(n_vocab*N);
|
| 789 |
+
//memcpy(embd_w.data(), ggml_get_data(inpL), sizeof(float)*n_vocab*N);
|
| 790 |
+
|
| 791 |
+
// return result for just the last token
|
| 792 |
+
embd_w.resize(n_vocab);
|
| 793 |
+
memcpy(embd_w.data(), (float *) ggml_get_data(inpL) + (n_vocab*(N-1)), sizeof(float)*n_vocab);
|
| 794 |
+
|
| 795 |
+
if (mem_per_token == 0) {
|
| 796 |
+
mem_per_token = ggml_used_mem(ctx0)/N;
|
| 797 |
+
}
|
| 798 |
+
//printf("used_mem = %zu\n", ggml_used_mem(ctx0));
|
| 799 |
+
|
| 800 |
+
ggml_free(ctx0);
|
| 801 |
+
|
| 802 |
+
return true;
|
| 803 |
+
}
|
| 804 |
+
|
| 805 |
+
/////////////////////////////// GPT-2 END ////////////////////////////////
|
| 806 |
+
|
| 807 |
+
constexpr int N_THREAD = 8;
|
| 808 |
+
|
| 809 |
+
struct gpt2_context {
|
| 810 |
+
std::string prompt_base = R"(Hello, how are you?
|
| 811 |
+
I'm fine, thanks. How are you?
|
| 812 |
+
Thanks, I'm fine too. What are you doing?
|
| 813 |
+
I'm just sitting here.
|
| 814 |
+
It's a lovely day, isn't it?
|
| 815 |
+
Yes, it is. I love the weather this time of year.
|
| 816 |
+
I wish it would rain a little bit.
|
| 817 |
+
Me too.
|
| 818 |
+
)";
|
| 819 |
+
|
| 820 |
+
std::mt19937 rng;
|
| 821 |
+
|
| 822 |
+
gpt_vocab vocab;
|
| 823 |
+
gpt2_model model;
|
| 824 |
+
|
| 825 |
+
int32_t n_threads = std::min(N_THREAD, (int) std::thread::hardware_concurrency());
|
| 826 |
+
|
| 827 |
+
// sampling parameters
|
| 828 |
+
int32_t top_k = 20;
|
| 829 |
+
float top_p = 0.98f;
|
| 830 |
+
float temp = 1.0f;
|
| 831 |
+
};
|
| 832 |
+
|
| 833 |
+
struct gpt2_context * gpt2_init(const char * path_model) {
|
| 834 |
+
gpt2_context * ctx = new gpt2_context;
|
| 835 |
+
|
| 836 |
+
ctx->rng = std::mt19937(time(NULL));
|
| 837 |
+
|
| 838 |
+
// load the model
|
| 839 |
+
{
|
| 840 |
+
const int64_t t_start_us = ggml_time_us();
|
| 841 |
+
|
| 842 |
+
if (!gpt2_model_load(path_model, ctx->model, ctx->vocab)) {
|
| 843 |
+
fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, "gpt-2.bin");
|
| 844 |
+
return nullptr;
|
| 845 |
+
}
|
| 846 |
+
|
| 847 |
+
const int64_t t_load_us = ggml_time_us() - t_start_us;
|
| 848 |
+
|
| 849 |
+
printf("gpt-2: model loaded in %d ms\n", (int) (t_load_us/1000));
|
| 850 |
+
}
|
| 851 |
+
|
| 852 |
+
return ctx;
|
| 853 |
+
}
|
| 854 |
+
|
| 855 |
+
void gpt2_free(struct gpt2_context * ctx) {
|
| 856 |
+
delete ctx;
|
| 857 |
+
}
|
| 858 |
+
|
| 859 |
+
const char * gpt2_get_prompt(struct gpt2_context * ctx) {
|
| 860 |
+
return ctx->prompt_base.c_str();
|
| 861 |
+
}
|
| 862 |
+
|
| 863 |
+
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt) {
|
| 864 |
+
ctx->prompt_base = prompt;
|
| 865 |
+
}
|
| 866 |
+
|
| 867 |
+
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text) {
|
| 868 |
+
return ::gpt_tokenize(ctx->vocab, text);
|
| 869 |
+
}
|
| 870 |
+
|
| 871 |
+
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens) {
|
| 872 |
+
int n_past = 0;
|
| 873 |
+
|
| 874 |
+
std::vector<float> embd_w;
|
| 875 |
+
|
| 876 |
+
// tokenize the prompt
|
| 877 |
+
std::vector<gpt_vocab::id> embd_inp = ::gpt2_tokenize(ctx, text);
|
| 878 |
+
|
| 879 |
+
int n_predict = std::min(max_tokens, ctx->model.hparams.n_ctx - (int) embd_inp.size());
|
| 880 |
+
|
| 881 |
+
std::vector<gpt_vocab::id> embd = embd_inp;
|
| 882 |
+
|
| 883 |
+
size_t mem_per_token = 3000000;
|
| 884 |
+
|
| 885 |
+
std::string result;
|
| 886 |
+
|
| 887 |
+
for (int i = embd.size(); i < embd_inp.size() + n_predict; i++) {
|
| 888 |
+
// predict
|
| 889 |
+
if (embd.size() > 0) {
|
| 890 |
+
if (!gpt2_eval(ctx->model, ctx->n_threads, n_past, embd, embd_w, mem_per_token)) {
|
| 891 |
+
printf("gpt-2: failed to generate text\n");
|
| 892 |
+
return "";
|
| 893 |
+
}
|
| 894 |
+
}
|
| 895 |
+
|
| 896 |
+
n_past += embd.size();
|
| 897 |
+
embd.clear();
|
| 898 |
+
|
| 899 |
+
{
|
| 900 |
+
// sample next token
|
| 901 |
+
const int top_k = ctx->top_k;
|
| 902 |
+
const float top_p = ctx->top_p;
|
| 903 |
+
const float temp = ctx->temp;
|
| 904 |
+
|
| 905 |
+
const int n_vocab = ctx->model.hparams.n_vocab;
|
| 906 |
+
|
| 907 |
+
const gpt_vocab::id id = gpt_sample_top_k_top_p(ctx->vocab, embd_w.data() + (embd_w.size() - n_vocab), top_k, top_p, temp, ctx->rng);
|
| 908 |
+
|
| 909 |
+
// add it to the context
|
| 910 |
+
embd.push_back(id);
|
| 911 |
+
}
|
| 912 |
+
|
| 913 |
+
result += ctx->vocab.id_to_token[embd[0]];
|
| 914 |
+
|
| 915 |
+
// end of text token
|
| 916 |
+
if (embd.back() == 50256 ||
|
| 917 |
+
ctx->vocab.id_to_token[embd.back()] == "." ||
|
| 918 |
+
ctx->vocab.id_to_token[embd.back()] == "!" ||
|
| 919 |
+
ctx->vocab.id_to_token[embd.back()] == "?") {
|
| 920 |
+
break;
|
| 921 |
+
}
|
| 922 |
+
}
|
| 923 |
+
|
| 924 |
+
return result;
|
| 925 |
+
}
|
examples/talk/gpt-2.h
ADDED
|
@@ -0,0 +1,27 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#pragma once
|
| 2 |
+
|
| 3 |
+
// TODO: Change to C-style API and move to ./examples for easy reuse.
|
| 4 |
+
|
| 5 |
+
#include <vector>
|
| 6 |
+
#include <map>
|
| 7 |
+
#include <string>
|
| 8 |
+
|
| 9 |
+
struct gpt_vocab {
|
| 10 |
+
using id = int32_t;
|
| 11 |
+
using token = std::string;
|
| 12 |
+
|
| 13 |
+
std::map<token, id> token_to_id;
|
| 14 |
+
std::map<id, token> id_to_token;
|
| 15 |
+
};
|
| 16 |
+
|
| 17 |
+
struct gpt2_context;
|
| 18 |
+
|
| 19 |
+
struct gpt2_context * gpt2_init(const char * path_model);
|
| 20 |
+
void gpt2_free(struct gpt2_context * ctx);
|
| 21 |
+
|
| 22 |
+
const char * gpt2_get_prompt(struct gpt2_context * ctx);
|
| 23 |
+
void gpt2_set_prompt(struct gpt2_context * ctx, const char * prompt);
|
| 24 |
+
|
| 25 |
+
std::vector<gpt_vocab::id> gpt2_tokenize(const gpt2_context * ctx, const char * text);
|
| 26 |
+
|
| 27 |
+
std::string gpt2_gen_text(gpt2_context * ctx, const char * text, int max_tokens);
|
examples/talk/speak.sh
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/bin/bash
|
| 2 |
+
|
| 3 |
+
# Usage:
|
| 4 |
+
# speak.sh <voice_id> <text-to-speak>
|
| 5 |
+
|
| 6 |
+
# espeak
|
| 7 |
+
# Mac OS: brew install espeak
|
| 8 |
+
# Linux: apt-get install espeak
|
| 9 |
+
#
|
| 10 |
+
espeak -v en-us+m$1 -s 175 -p 50 -a 200 -g 5 -k 5 "$2"
|
| 11 |
+
|
| 12 |
+
# Eleven Labs
|
| 13 |
+
#
|
| 14 |
+
#wd=$(dirname $0)
|
| 15 |
+
#script=$wd/eleven-labs.py
|
| 16 |
+
#python3 $script $1 "$2"
|
| 17 |
+
#ffplay -autoexit -nodisp -loglevel quiet -hide_banner -i ./audio.mp3
|
examples/talk/talk.cpp
ADDED
|
@@ -0,0 +1,733 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
// Talk with AI
|
| 2 |
+
//
|
| 3 |
+
|
| 4 |
+
#include "whisper.h"
|
| 5 |
+
#include "gpt-2.h"
|
| 6 |
+
|
| 7 |
+
#include <SDL.h>
|
| 8 |
+
#include <SDL_audio.h>
|
| 9 |
+
|
| 10 |
+
#include <cassert>
|
| 11 |
+
#include <cstdio>
|
| 12 |
+
#include <fstream>
|
| 13 |
+
#include <mutex>
|
| 14 |
+
#include <regex>
|
| 15 |
+
#include <string>
|
| 16 |
+
#include <thread>
|
| 17 |
+
#include <vector>
|
| 18 |
+
#include <regex>
|
| 19 |
+
|
| 20 |
+
// command-line parameters
|
| 21 |
+
struct whisper_params {
|
| 22 |
+
int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency());
|
| 23 |
+
int32_t voice_ms = 10000;
|
| 24 |
+
int32_t capture_id = -1;
|
| 25 |
+
int32_t max_tokens = 32;
|
| 26 |
+
int32_t audio_ctx = 0;
|
| 27 |
+
|
| 28 |
+
float vad_thold = 0.6f;
|
| 29 |
+
float freq_thold = 100.0f;
|
| 30 |
+
|
| 31 |
+
bool speed_up = false;
|
| 32 |
+
bool translate = false;
|
| 33 |
+
bool print_special = false;
|
| 34 |
+
bool print_energy = false;
|
| 35 |
+
bool no_timestamps = true;
|
| 36 |
+
|
| 37 |
+
std::string person = "Santa";
|
| 38 |
+
std::string language = "en";
|
| 39 |
+
std::string model_wsp = "models/ggml-base.en.bin";
|
| 40 |
+
std::string model_gpt = "models/ggml-gpt-2-117M.bin";
|
| 41 |
+
std::string speak = "./examples/talk/speak.sh";
|
| 42 |
+
std::string fname_out = "";
|
| 43 |
+
};
|
| 44 |
+
|
| 45 |
+
void whisper_print_usage(int argc, char ** argv, const whisper_params & params);
|
| 46 |
+
|
| 47 |
+
bool whisper_params_parse(int argc, char ** argv, whisper_params & params) {
|
| 48 |
+
for (int i = 1; i < argc; i++) {
|
| 49 |
+
std::string arg = argv[i];
|
| 50 |
+
|
| 51 |
+
if (arg == "-h" || arg == "--help") {
|
| 52 |
+
whisper_print_usage(argc, argv, params);
|
| 53 |
+
exit(0);
|
| 54 |
+
}
|
| 55 |
+
else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); }
|
| 56 |
+
else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); }
|
| 57 |
+
else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); }
|
| 58 |
+
else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); }
|
| 59 |
+
else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); }
|
| 60 |
+
else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); }
|
| 61 |
+
else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); }
|
| 62 |
+
else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; }
|
| 63 |
+
else if (arg == "-tr" || arg == "--translate") { params.translate = true; }
|
| 64 |
+
else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; }
|
| 65 |
+
else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; }
|
| 66 |
+
else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; }
|
| 67 |
+
else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; }
|
| 68 |
+
else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; }
|
| 69 |
+
else if (arg == "-mg" || arg == "--model-gpt") { params.model_gpt = argv[++i]; }
|
| 70 |
+
else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; }
|
| 71 |
+
else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; }
|
| 72 |
+
else {
|
| 73 |
+
fprintf(stderr, "error: unknown argument: %s\n", arg.c_str());
|
| 74 |
+
whisper_print_usage(argc, argv, params);
|
| 75 |
+
exit(0);
|
| 76 |
+
}
|
| 77 |
+
}
|
| 78 |
+
|
| 79 |
+
return true;
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
void whisper_print_usage(int argc, char ** argv, const whisper_params & params) {
|
| 83 |
+
fprintf(stderr, "\n");
|
| 84 |
+
fprintf(stderr, "usage: %s [options]\n", argv[0]);
|
| 85 |
+
fprintf(stderr, "\n");
|
| 86 |
+
fprintf(stderr, "options:\n");
|
| 87 |
+
fprintf(stderr, " -h, --help [default] show this help message and exit\n");
|
| 88 |
+
fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads);
|
| 89 |
+
fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms);
|
| 90 |
+
fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id);
|
| 91 |
+
fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens);
|
| 92 |
+
fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx);
|
| 93 |
+
fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold);
|
| 94 |
+
fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold);
|
| 95 |
+
fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false");
|
| 96 |
+
fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false");
|
| 97 |
+
fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false");
|
| 98 |
+
fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false");
|
| 99 |
+
fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str());
|
| 100 |
+
fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str());
|
| 101 |
+
fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str());
|
| 102 |
+
fprintf(stderr, " -mg FILE, --model-gpt [%-7s] gpt model file\n", params.model_gpt.c_str());
|
| 103 |
+
fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str());
|
| 104 |
+
fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str());
|
| 105 |
+
fprintf(stderr, "\n");
|
| 106 |
+
}
|
| 107 |
+
|
| 108 |
+
//
|
| 109 |
+
// SDL Audio capture
|
| 110 |
+
//
|
| 111 |
+
|
| 112 |
+
class audio_async {
|
| 113 |
+
public:
|
| 114 |
+
audio_async(int len_ms);
|
| 115 |
+
~audio_async();
|
| 116 |
+
|
| 117 |
+
bool init(int capture_id, int sample_rate);
|
| 118 |
+
|
| 119 |
+
// start capturing audio via the provided SDL callback
|
| 120 |
+
// keep last len_ms seconds of audio in a circular buffer
|
| 121 |
+
bool resume();
|
| 122 |
+
bool pause();
|
| 123 |
+
bool clear();
|
| 124 |
+
|
| 125 |
+
// callback to be called by SDL
|
| 126 |
+
void callback(uint8_t * stream, int len);
|
| 127 |
+
|
| 128 |
+
// get audio data from the circular buffer
|
| 129 |
+
void get(int ms, std::vector<float> & audio);
|
| 130 |
+
|
| 131 |
+
private:
|
| 132 |
+
SDL_AudioDeviceID m_dev_id_in = 0;
|
| 133 |
+
|
| 134 |
+
int m_len_ms = 0;
|
| 135 |
+
int m_sample_rate = 0;
|
| 136 |
+
|
| 137 |
+
bool m_running = false;
|
| 138 |
+
std::mutex m_mutex;
|
| 139 |
+
|
| 140 |
+
std::vector<float> m_audio;
|
| 141 |
+
std::vector<float> m_audio_new;
|
| 142 |
+
size_t m_audio_pos = 0;
|
| 143 |
+
size_t m_audio_len = 0;
|
| 144 |
+
};
|
| 145 |
+
|
| 146 |
+
audio_async::audio_async(int len_ms) {
|
| 147 |
+
m_len_ms = len_ms;
|
| 148 |
+
}
|
| 149 |
+
|
| 150 |
+
audio_async::~audio_async() {
|
| 151 |
+
if (m_dev_id_in) {
|
| 152 |
+
SDL_CloseAudioDevice(m_dev_id_in);
|
| 153 |
+
}
|
| 154 |
+
}
|
| 155 |
+
|
| 156 |
+
bool audio_async::init(int capture_id, int sample_rate) {
|
| 157 |
+
SDL_LogSetPriority(SDL_LOG_CATEGORY_APPLICATION, SDL_LOG_PRIORITY_INFO);
|
| 158 |
+
|
| 159 |
+
if (SDL_Init(SDL_INIT_AUDIO) < 0) {
|
| 160 |
+
SDL_LogError(SDL_LOG_CATEGORY_APPLICATION, "Couldn't initialize SDL: %s\n", SDL_GetError());
|
| 161 |
+
return false;
|
| 162 |
+
}
|
| 163 |
+
|
| 164 |
+
SDL_SetHintWithPriority(SDL_HINT_AUDIO_RESAMPLING_MODE, "medium", SDL_HINT_OVERRIDE);
|
| 165 |
+
|
| 166 |
+
{
|
| 167 |
+
int nDevices = SDL_GetNumAudioDevices(SDL_TRUE);
|
| 168 |
+
fprintf(stderr, "%s: found %d capture devices:\n", __func__, nDevices);
|
| 169 |
+
for (int i = 0; i < nDevices; i++) {
|
| 170 |
+
fprintf(stderr, "%s: - Capture device #%d: '%s'\n", __func__, i, SDL_GetAudioDeviceName(i, SDL_TRUE));
|
| 171 |
+
}
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
SDL_AudioSpec capture_spec_requested;
|
| 175 |
+
SDL_AudioSpec capture_spec_obtained;
|
| 176 |
+
|
| 177 |
+
SDL_zero(capture_spec_requested);
|
| 178 |
+
SDL_zero(capture_spec_obtained);
|
| 179 |
+
|
| 180 |
+
capture_spec_requested.freq = sample_rate;
|
| 181 |
+
capture_spec_requested.format = AUDIO_F32;
|
| 182 |
+
capture_spec_requested.channels = 1;
|
| 183 |
+
capture_spec_requested.samples = 1024;
|
| 184 |
+
capture_spec_requested.callback = [](void * userdata, uint8_t * stream, int len) {
|
| 185 |
+
audio_async * audio = (audio_async *) userdata;
|
| 186 |
+
audio->callback(stream, len);
|
| 187 |
+
};
|
| 188 |
+
capture_spec_requested.userdata = this;
|
| 189 |
+
|
| 190 |
+
if (capture_id >= 0) {
|
| 191 |
+
fprintf(stderr, "%s: attempt to open capture device %d : '%s' ...\n", __func__, capture_id, SDL_GetAudioDeviceName(capture_id, SDL_TRUE));
|
| 192 |
+
m_dev_id_in = SDL_OpenAudioDevice(SDL_GetAudioDeviceName(capture_id, SDL_TRUE), SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
| 193 |
+
} else {
|
| 194 |
+
fprintf(stderr, "%s: attempt to open default capture device ...\n", __func__);
|
| 195 |
+
m_dev_id_in = SDL_OpenAudioDevice(nullptr, SDL_TRUE, &capture_spec_requested, &capture_spec_obtained, 0);
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
if (!m_dev_id_in) {
|
| 199 |
+
fprintf(stderr, "%s: couldn't open an audio device for capture: %s!\n", __func__, SDL_GetError());
|
| 200 |
+
m_dev_id_in = 0;
|
| 201 |
+
|
| 202 |
+
return false;
|
| 203 |
+
} else {
|
| 204 |
+
fprintf(stderr, "%s: obtained spec for input device (SDL Id = %d):\n", __func__, m_dev_id_in);
|
| 205 |
+
fprintf(stderr, "%s: - sample rate: %d\n", __func__, capture_spec_obtained.freq);
|
| 206 |
+
fprintf(stderr, "%s: - format: %d (required: %d)\n", __func__, capture_spec_obtained.format,
|
| 207 |
+
capture_spec_requested.format);
|
| 208 |
+
fprintf(stderr, "%s: - channels: %d (required: %d)\n", __func__, capture_spec_obtained.channels,
|
| 209 |
+
capture_spec_requested.channels);
|
| 210 |
+
fprintf(stderr, "%s: - samples per frame: %d\n", __func__, capture_spec_obtained.samples);
|
| 211 |
+
fprintf(stderr, "\n");
|
| 212 |
+
}
|
| 213 |
+
|
| 214 |
+
m_sample_rate = capture_spec_obtained.freq;
|
| 215 |
+
|
| 216 |
+
m_audio.resize((m_sample_rate*m_len_ms)/1000);
|
| 217 |
+
|
| 218 |
+
return true;
|
| 219 |
+
}
|
| 220 |
+
|
| 221 |
+
bool audio_async::resume() {
|
| 222 |
+
if (!m_dev_id_in) {
|
| 223 |
+
fprintf(stderr, "%s: no audio device to resume!\n", __func__);
|
| 224 |
+
return false;
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
if (m_running) {
|
| 228 |
+
fprintf(stderr, "%s: already running!\n", __func__);
|
| 229 |
+
return false;
|
| 230 |
+
}
|
| 231 |
+
|
| 232 |
+
SDL_PauseAudioDevice(m_dev_id_in, 0);
|
| 233 |
+
|
| 234 |
+
m_running = true;
|
| 235 |
+
|
| 236 |
+
return true;
|
| 237 |
+
}
|
| 238 |
+
|
| 239 |
+
bool audio_async::pause() {
|
| 240 |
+
if (!m_dev_id_in) {
|
| 241 |
+
fprintf(stderr, "%s: no audio device to pause!\n", __func__);
|
| 242 |
+
return false;
|
| 243 |
+
}
|
| 244 |
+
|
| 245 |
+
if (!m_running) {
|
| 246 |
+
fprintf(stderr, "%s: already paused!\n", __func__);
|
| 247 |
+
return false;
|
| 248 |
+
}
|
| 249 |
+
|
| 250 |
+
SDL_PauseAudioDevice(m_dev_id_in, 1);
|
| 251 |
+
|
| 252 |
+
m_running = false;
|
| 253 |
+
|
| 254 |
+
return true;
|
| 255 |
+
}
|
| 256 |
+
|
| 257 |
+
bool audio_async::clear() {
|
| 258 |
+
if (!m_dev_id_in) {
|
| 259 |
+
fprintf(stderr, "%s: no audio device to clear!\n", __func__);
|
| 260 |
+
return false;
|
| 261 |
+
}
|
| 262 |
+
|
| 263 |
+
if (!m_running) {
|
| 264 |
+
fprintf(stderr, "%s: not running!\n", __func__);
|
| 265 |
+
return false;
|
| 266 |
+
}
|
| 267 |
+
|
| 268 |
+
{
|
| 269 |
+
std::lock_guard<std::mutex> lock(m_mutex);
|
| 270 |
+
|
| 271 |
+
m_audio_pos = 0;
|
| 272 |
+
m_audio_len = 0;
|
| 273 |
+
}
|
| 274 |
+
|
| 275 |
+
return true;
|
| 276 |
+
}
|
| 277 |
+
|
| 278 |
+
// callback to be called by SDL
|
| 279 |
+
void audio_async::callback(uint8_t * stream, int len) {
|
| 280 |
+
if (!m_running) {
|
| 281 |
+
return;
|
| 282 |
+
}
|
| 283 |
+
|
| 284 |
+
const size_t n_samples = len / sizeof(float);
|
| 285 |
+
|
| 286 |
+
m_audio_new.resize(n_samples);
|
| 287 |
+
memcpy(m_audio_new.data(), stream, n_samples * sizeof(float));
|
| 288 |
+
|
| 289 |
+
//fprintf(stderr, "%s: %zu samples, pos %zu, len %zu\n", __func__, n_samples, m_audio_pos, m_audio_len);
|
| 290 |
+
|
| 291 |
+
{
|
| 292 |
+
std::lock_guard<std::mutex> lock(m_mutex);
|
| 293 |
+
|
| 294 |
+
if (m_audio_pos + n_samples > m_audio.size()) {
|
| 295 |
+
const size_t n0 = m_audio.size() - m_audio_pos;
|
| 296 |
+
|
| 297 |
+
memcpy(&m_audio[m_audio_pos], stream, n0 * sizeof(float));
|
| 298 |
+
memcpy(&m_audio[0], &stream[n0], (n_samples - n0) * sizeof(float));
|
| 299 |
+
|
| 300 |
+
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
| 301 |
+
m_audio_len = m_audio.size();
|
| 302 |
+
} else {
|
| 303 |
+
memcpy(&m_audio[m_audio_pos], stream, n_samples * sizeof(float));
|
| 304 |
+
|
| 305 |
+
m_audio_pos = (m_audio_pos + n_samples) % m_audio.size();
|
| 306 |
+
m_audio_len = std::min(m_audio_len + n_samples, m_audio.size());
|
| 307 |
+
}
|
| 308 |
+
}
|
| 309 |
+
}
|
| 310 |
+
|
| 311 |
+
void audio_async::get(int ms, std::vector<float> & result) {
|
| 312 |
+
if (!m_dev_id_in) {
|
| 313 |
+
fprintf(stderr, "%s: no audio device to get audio from!\n", __func__);
|
| 314 |
+
return;
|
| 315 |
+
}
|
| 316 |
+
|
| 317 |
+
if (!m_running) {
|
| 318 |
+
fprintf(stderr, "%s: not running!\n", __func__);
|
| 319 |
+
return;
|
| 320 |
+
}
|
| 321 |
+
|
| 322 |
+
result.clear();
|
| 323 |
+
|
| 324 |
+
{
|
| 325 |
+
std::lock_guard<std::mutex> lock(m_mutex);
|
| 326 |
+
|
| 327 |
+
if (ms <= 0) {
|
| 328 |
+
ms = m_len_ms;
|
| 329 |
+
}
|
| 330 |
+
|
| 331 |
+
size_t n_samples = (m_sample_rate * ms) / 1000;
|
| 332 |
+
if (n_samples > m_audio_len) {
|
| 333 |
+
n_samples = m_audio_len;
|
| 334 |
+
}
|
| 335 |
+
|
| 336 |
+
result.resize(n_samples);
|
| 337 |
+
|
| 338 |
+
int s0 = m_audio_pos - n_samples;
|
| 339 |
+
if (s0 < 0) {
|
| 340 |
+
s0 += m_audio.size();
|
| 341 |
+
}
|
| 342 |
+
|
| 343 |
+
if (s0 + n_samples > m_audio.size()) {
|
| 344 |
+
const size_t n0 = m_audio.size() - s0;
|
| 345 |
+
|
| 346 |
+
memcpy(result.data(), &m_audio[s0], n0 * sizeof(float));
|
| 347 |
+
memcpy(&result[n0], &m_audio[0], (n_samples - n0) * sizeof(float));
|
| 348 |
+
} else {
|
| 349 |
+
memcpy(result.data(), &m_audio[s0], n_samples * sizeof(float));
|
| 350 |
+
}
|
| 351 |
+
}
|
| 352 |
+
}
|
| 353 |
+
|
| 354 |
+
///////////////////////////
|
| 355 |
+
|
| 356 |
+
std::string trim(const std::string & s) {
|
| 357 |
+
std::regex e("^\\s+|\\s+$");
|
| 358 |
+
return std::regex_replace(s, e, "");
|
| 359 |
+
}
|
| 360 |
+
|
| 361 |
+
std::string replace(const std::string & s, const std::string & from, const std::string & to) {
|
| 362 |
+
std::string result = s;
|
| 363 |
+
size_t pos = 0;
|
| 364 |
+
while ((pos = result.find(from, pos)) != std::string::npos) {
|
| 365 |
+
result.replace(pos, from.length(), to);
|
| 366 |
+
pos += to.length();
|
| 367 |
+
}
|
| 368 |
+
return result;
|
| 369 |
+
}
|
| 370 |
+
|
| 371 |
+
void high_pass_filter(std::vector<float> & data, float cutoff, float sample_rate) {
|
| 372 |
+
const float rc = 1.0f / (2.0f * M_PI * cutoff);
|
| 373 |
+
const float dt = 1.0f / sample_rate;
|
| 374 |
+
const float alpha = dt / (rc + dt);
|
| 375 |
+
|
| 376 |
+
float y = data[0];
|
| 377 |
+
|
| 378 |
+
for (size_t i = 1; i < data.size(); i++) {
|
| 379 |
+
y = alpha * (y + data[i] - data[i - 1]);
|
| 380 |
+
data[i] = y;
|
| 381 |
+
}
|
| 382 |
+
}
|
| 383 |
+
|
| 384 |
+
bool vad_simple(std::vector<float> & pcmf32, int sample_rate, int last_ms, float vad_thold, float freq_thold, bool verbose) {
|
| 385 |
+
const int n_samples = pcmf32.size();
|
| 386 |
+
const int n_samples_last = (sample_rate * last_ms) / 1000;
|
| 387 |
+
|
| 388 |
+
if (n_samples_last >= n_samples) {
|
| 389 |
+
// not enough samples - assume no speech
|
| 390 |
+
return false;
|
| 391 |
+
}
|
| 392 |
+
|
| 393 |
+
if (freq_thold > 0.0f) {
|
| 394 |
+
high_pass_filter(pcmf32, freq_thold, sample_rate);
|
| 395 |
+
}
|
| 396 |
+
|
| 397 |
+
float energy_all = 0.0f;
|
| 398 |
+
float energy_last = 0.0f;
|
| 399 |
+
|
| 400 |
+
for (size_t i = 0; i < n_samples; i++) {
|
| 401 |
+
energy_all += fabsf(pcmf32[i]);
|
| 402 |
+
|
| 403 |
+
if (i >= n_samples - n_samples_last) {
|
| 404 |
+
energy_last += fabsf(pcmf32[i]);
|
| 405 |
+
}
|
| 406 |
+
}
|
| 407 |
+
|
| 408 |
+
energy_all /= n_samples;
|
| 409 |
+
energy_last /= n_samples_last;
|
| 410 |
+
|
| 411 |
+
if (verbose) {
|
| 412 |
+
fprintf(stderr, "%s: energy_all: %f, energy_last: %f, vad_thold: %f, freq_thold: %f\n", __func__, energy_all, energy_last, vad_thold, freq_thold);
|
| 413 |
+
}
|
| 414 |
+
|
| 415 |
+
if (energy_last > vad_thold*energy_all) {
|
| 416 |
+
return false;
|
| 417 |
+
}
|
| 418 |
+
|
| 419 |
+
return true;
|
| 420 |
+
}
|
| 421 |
+
|
| 422 |
+
std::string transcribe(whisper_context * ctx, const whisper_params & params, const std::vector<float> & pcmf32, float & prob, int64_t & t_ms) {
|
| 423 |
+
const auto t_start = std::chrono::high_resolution_clock::now();
|
| 424 |
+
|
| 425 |
+
prob = 0.0f;
|
| 426 |
+
t_ms = 0;
|
| 427 |
+
|
| 428 |
+
whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY);
|
| 429 |
+
|
| 430 |
+
wparams.print_progress = false;
|
| 431 |
+
wparams.print_special = params.print_special;
|
| 432 |
+
wparams.print_realtime = false;
|
| 433 |
+
wparams.print_timestamps = !params.no_timestamps;
|
| 434 |
+
wparams.translate = params.translate;
|
| 435 |
+
wparams.no_context = true;
|
| 436 |
+
wparams.single_segment = true;
|
| 437 |
+
wparams.max_tokens = params.max_tokens;
|
| 438 |
+
wparams.language = params.language.c_str();
|
| 439 |
+
wparams.n_threads = params.n_threads;
|
| 440 |
+
|
| 441 |
+
wparams.audio_ctx = params.audio_ctx;
|
| 442 |
+
wparams.speed_up = params.speed_up;
|
| 443 |
+
|
| 444 |
+
if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) {
|
| 445 |
+
return "";
|
| 446 |
+
}
|
| 447 |
+
|
| 448 |
+
int prob_n = 0;
|
| 449 |
+
std::string result;
|
| 450 |
+
|
| 451 |
+
const int n_segments = whisper_full_n_segments(ctx);
|
| 452 |
+
for (int i = 0; i < n_segments; ++i) {
|
| 453 |
+
const char * text = whisper_full_get_segment_text(ctx, i);
|
| 454 |
+
|
| 455 |
+
result += text;
|
| 456 |
+
|
| 457 |
+
const int n_tokens = whisper_full_n_tokens(ctx, i);
|
| 458 |
+
for (int j = 0; j < n_tokens; ++j) {
|
| 459 |
+
const auto token = whisper_full_get_token_data(ctx, i, j);
|
| 460 |
+
|
| 461 |
+
prob += token.p;
|
| 462 |
+
++prob_n;
|
| 463 |
+
}
|
| 464 |
+
}
|
| 465 |
+
|
| 466 |
+
if (prob_n > 0) {
|
| 467 |
+
prob /= prob_n;
|
| 468 |
+
}
|
| 469 |
+
|
| 470 |
+
const auto t_end = std::chrono::high_resolution_clock::now();
|
| 471 |
+
t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count();
|
| 472 |
+
|
| 473 |
+
return result;
|
| 474 |
+
}
|
| 475 |
+
|
| 476 |
+
// compute similarity between two strings using Levenshtein distance
|
| 477 |
+
float similarity(const std::string & s0, const std::string & s1) {
|
| 478 |
+
const size_t len0 = s0.size() + 1;
|
| 479 |
+
const size_t len1 = s1.size() + 1;
|
| 480 |
+
|
| 481 |
+
std::vector<int> col(len1, 0);
|
| 482 |
+
std::vector<int> prevCol(len1, 0);
|
| 483 |
+
|
| 484 |
+
for (size_t i = 0; i < len1; i++) {
|
| 485 |
+
prevCol[i] = i;
|
| 486 |
+
}
|
| 487 |
+
|
| 488 |
+
for (size_t i = 0; i < len0; i++) {
|
| 489 |
+
col[0] = i;
|
| 490 |
+
for (size_t j = 1; j < len1; j++) {
|
| 491 |
+
col[j] = std::min(std::min(1 + col[j - 1], 1 + prevCol[j]), prevCol[j - 1] + (s0[i - 1] == s1[j - 1] ? 0 : 1));
|
| 492 |
+
}
|
| 493 |
+
col.swap(prevCol);
|
| 494 |
+
}
|
| 495 |
+
|
| 496 |
+
const float dist = prevCol[len1 - 1];
|
| 497 |
+
|
| 498 |
+
return 1.0f - (dist / std::max(s0.size(), s1.size()));
|
| 499 |
+
}
|
| 500 |
+
|
| 501 |
+
// generated with ChatGPT
|
| 502 |
+
std::map<std::string, std::string> k_prompts = {
|
| 503 |
+
{ "Santa",
|
| 504 |
+
R"(Kid: Hi Santa! Are you real?
|
| 505 |
+
Santa: Of course I am, my dear! Ho ho ho!
|
| 506 |
+
Kid: Can you please bring me a new toy for Christmas?
|
| 507 |
+
Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents.
|
| 508 |
+
Kid: I will, Santa! Thank you!
|
| 509 |
+
Santa: You're welcome, little one. Merry Christmas! Ho ho ho!
|
| 510 |
+
Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night?
|
| 511 |
+
Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child.
|
| 512 |
+
Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime?
|
| 513 |
+
Santa: I'm sorry, but only good boys and girls get to ride in my sleigh.
|
| 514 |
+
)" },
|
| 515 |
+
{ "Kid",
|
| 516 |
+
R"(Kid: Hi Santa! Are you real?
|
| 517 |
+
Santa: Of course I am, my dear! Ho ho ho!
|
| 518 |
+
Kid: Can you please bring me a new toy for Christmas?
|
| 519 |
+
Santa: I'll see what I can do, but you have to make sure to be a good boy or girl and listen to your parents.
|
| 520 |
+
Kid: I will, Santa! Thank you!
|
| 521 |
+
Kid: Can you tell me how you deliver all the presents to all the kids in the world in one night?
|
| 522 |
+
Santa: It's a secret, but I have a lot of help from my elves and my magical sleigh. And I have a special route that I follow to make sure I visit every child.
|
| 523 |
+
Kid: Wow, that's amazing! Can I please have a ride in your sleigh sometime?
|
| 524 |
+
)" },
|
| 525 |
+
};
|
| 526 |
+
|
| 527 |
+
int main(int argc, char ** argv) {
|
| 528 |
+
whisper_params params;
|
| 529 |
+
|
| 530 |
+
if (whisper_params_parse(argc, argv, params) == false) {
|
| 531 |
+
return 1;
|
| 532 |
+
}
|
| 533 |
+
|
| 534 |
+
if (whisper_lang_id(params.language.c_str()) == -1) {
|
| 535 |
+
fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str());
|
| 536 |
+
whisper_print_usage(argc, argv, params);
|
| 537 |
+
exit(0);
|
| 538 |
+
}
|
| 539 |
+
|
| 540 |
+
// whisper init
|
| 541 |
+
|
| 542 |
+
struct whisper_context * ctx_wsp = whisper_init(params.model_wsp.c_str());
|
| 543 |
+
|
| 544 |
+
// gpt init
|
| 545 |
+
|
| 546 |
+
struct gpt2_context * ctx_gpt = gpt2_init(params.model_gpt.c_str());
|
| 547 |
+
|
| 548 |
+
// print some info about the processing
|
| 549 |
+
{
|
| 550 |
+
fprintf(stderr, "\n");
|
| 551 |
+
if (!whisper_is_multilingual(ctx_wsp)) {
|
| 552 |
+
if (params.language != "en" || params.translate) {
|
| 553 |
+
params.language = "en";
|
| 554 |
+
params.translate = false;
|
| 555 |
+
fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__);
|
| 556 |
+
}
|
| 557 |
+
}
|
| 558 |
+
fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n",
|
| 559 |
+
__func__,
|
| 560 |
+
params.n_threads,
|
| 561 |
+
params.language.c_str(),
|
| 562 |
+
params.translate ? "translate" : "transcribe",
|
| 563 |
+
params.no_timestamps ? 0 : 1);
|
| 564 |
+
|
| 565 |
+
fprintf(stderr, "\n");
|
| 566 |
+
}
|
| 567 |
+
|
| 568 |
+
|
| 569 |
+
// init audio
|
| 570 |
+
|
| 571 |
+
audio_async audio(30*1000);
|
| 572 |
+
if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) {
|
| 573 |
+
fprintf(stderr, "%s: audio.init() failed!\n", __func__);
|
| 574 |
+
return 1;
|
| 575 |
+
}
|
| 576 |
+
|
| 577 |
+
audio.resume();
|
| 578 |
+
|
| 579 |
+
int n_iter = 0;
|
| 580 |
+
|
| 581 |
+
bool is_running = true;
|
| 582 |
+
bool force_speak = params.person == "Kid";
|
| 583 |
+
|
| 584 |
+
float prob0 = 0.0f;
|
| 585 |
+
float prob = 0.0f;
|
| 586 |
+
|
| 587 |
+
std::vector<float> pcmf32_cur;
|
| 588 |
+
std::vector<float> pcmf32_prompt;
|
| 589 |
+
|
| 590 |
+
if (k_prompts.find(params.person) == k_prompts.end()) {
|
| 591 |
+
fprintf(stderr, "%s: unknown person '%s'\n", __func__, params.person.c_str());
|
| 592 |
+
return 1;
|
| 593 |
+
}
|
| 594 |
+
|
| 595 |
+
gpt2_set_prompt(ctx_gpt, k_prompts.at(params.person).c_str());
|
| 596 |
+
|
| 597 |
+
const std::string person_other = params.person == "Santa" ? "Kid" : "Santa";
|
| 598 |
+
const int voice_id = params.person == "Santa" ? 5 : 2;
|
| 599 |
+
|
| 600 |
+
fprintf(stderr, "gpt-2: prompt_base:\n");
|
| 601 |
+
fprintf(stderr, "========================\n\n");
|
| 602 |
+
fprintf(stderr, "%s\n", gpt2_get_prompt(ctx_gpt));
|
| 603 |
+
fprintf(stderr, "========================\n\n");
|
| 604 |
+
|
| 605 |
+
// main loop
|
| 606 |
+
while (is_running) {
|
| 607 |
+
// handle Ctrl + C
|
| 608 |
+
{
|
| 609 |
+
SDL_Event event;
|
| 610 |
+
while (SDL_PollEvent(&event)) {
|
| 611 |
+
switch (event.type) {
|
| 612 |
+
case SDL_QUIT:
|
| 613 |
+
{
|
| 614 |
+
is_running = false;
|
| 615 |
+
} break;
|
| 616 |
+
default:
|
| 617 |
+
break;
|
| 618 |
+
}
|
| 619 |
+
}
|
| 620 |
+
|
| 621 |
+
if (!is_running) {
|
| 622 |
+
break;
|
| 623 |
+
}
|
| 624 |
+
}
|
| 625 |
+
|
| 626 |
+
// delay
|
| 627 |
+
std::this_thread::sleep_for(std::chrono::milliseconds(100));
|
| 628 |
+
|
| 629 |
+
int64_t t_ms = 0;
|
| 630 |
+
|
| 631 |
+
{
|
| 632 |
+
audio.get(2000, pcmf32_cur);
|
| 633 |
+
|
| 634 |
+
if (vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) {
|
| 635 |
+
fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__);
|
| 636 |
+
|
| 637 |
+
audio.get(params.voice_ms, pcmf32_cur);
|
| 638 |
+
|
| 639 |
+
std::string text_heard = "Hey little one, what do you want for Christmas?";
|
| 640 |
+
if (!force_speak) {
|
| 641 |
+
text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prob0, t_ms));
|
| 642 |
+
}
|
| 643 |
+
|
| 644 |
+
force_speak = false;
|
| 645 |
+
|
| 646 |
+
// remove text between brackets using regex
|
| 647 |
+
{
|
| 648 |
+
std::regex re("\\[.*?\\]");
|
| 649 |
+
text_heard = std::regex_replace(text_heard, re, "");
|
| 650 |
+
}
|
| 651 |
+
|
| 652 |
+
// remove text between brackets using regex
|
| 653 |
+
{
|
| 654 |
+
std::regex re("\\(.*?\\)");
|
| 655 |
+
text_heard = std::regex_replace(text_heard, re, "");
|
| 656 |
+
}
|
| 657 |
+
|
| 658 |
+
// remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' '
|
| 659 |
+
text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
| 660 |
+
|
| 661 |
+
// take first line
|
| 662 |
+
text_heard = text_heard.substr(0, text_heard.find_first_of("\n"));
|
| 663 |
+
|
| 664 |
+
// remove leading and trailing whitespace
|
| 665 |
+
text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), "");
|
| 666 |
+
text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), "");
|
| 667 |
+
|
| 668 |
+
const std::vector<gpt_vocab::id> tokens = gpt2_tokenize(ctx_gpt, text_heard.c_str());
|
| 669 |
+
|
| 670 |
+
if (text_heard.empty() || tokens.empty()) {
|
| 671 |
+
fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__);
|
| 672 |
+
audio.clear();
|
| 673 |
+
|
| 674 |
+
continue;
|
| 675 |
+
}
|
| 676 |
+
|
| 677 |
+
fprintf(stdout, "%s: Heard '%s%s%s', (t = %d ms)\n", __func__, "\033[1m", text_heard.c_str(), "\033[0m", (int) t_ms);
|
| 678 |
+
|
| 679 |
+
std::string prompt_base = gpt2_get_prompt(ctx_gpt);
|
| 680 |
+
|
| 681 |
+
std::string text_to_speak;
|
| 682 |
+
|
| 683 |
+
{
|
| 684 |
+
text_heard = person_other + ": " + text_heard;
|
| 685 |
+
|
| 686 |
+
text_to_speak = gpt2_gen_text(ctx_gpt, (prompt_base + text_heard + "\n").c_str(), params.max_tokens);
|
| 687 |
+
text_to_speak = std::regex_replace(text_to_speak, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), "");
|
| 688 |
+
text_to_speak = text_to_speak.substr(0, text_to_speak.find_first_of("\n"));
|
| 689 |
+
|
| 690 |
+
// remove first 2 lines of base prompt
|
| 691 |
+
if (n_iter > 4) {
|
| 692 |
+
{
|
| 693 |
+
const size_t pos = prompt_base.find_first_of("\n");
|
| 694 |
+
if (pos != std::string::npos) {
|
| 695 |
+
prompt_base = prompt_base.substr(pos + 1);
|
| 696 |
+
}
|
| 697 |
+
}
|
| 698 |
+
{
|
| 699 |
+
const size_t pos = prompt_base.find_first_of("\n");
|
| 700 |
+
if (pos != std::string::npos) {
|
| 701 |
+
prompt_base = prompt_base.substr(pos + 1);
|
| 702 |
+
}
|
| 703 |
+
}
|
| 704 |
+
}
|
| 705 |
+
|
| 706 |
+
prompt_base += text_heard + "\n" + text_to_speak + "\n";
|
| 707 |
+
}
|
| 708 |
+
|
| 709 |
+
printf("%s\n", text_to_speak.c_str());
|
| 710 |
+
|
| 711 |
+
//printf("========================\n");
|
| 712 |
+
//printf("gpt-2: prompt_base:\n'%s'\n", prompt_base.c_str());
|
| 713 |
+
//printf("========================\n");
|
| 714 |
+
|
| 715 |
+
gpt2_set_prompt(ctx_gpt, prompt_base.c_str());
|
| 716 |
+
|
| 717 |
+
text_to_speak = ::replace(text_to_speak, params.person + ": ", "");
|
| 718 |
+
system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str());
|
| 719 |
+
|
| 720 |
+
audio.clear();
|
| 721 |
+
|
| 722 |
+
++n_iter;
|
| 723 |
+
}
|
| 724 |
+
}
|
| 725 |
+
}
|
| 726 |
+
|
| 727 |
+
audio.pause();
|
| 728 |
+
|
| 729 |
+
whisper_print_timings(ctx_wsp);
|
| 730 |
+
whisper_free(ctx_wsp);
|
| 731 |
+
|
| 732 |
+
return 0;
|
| 733 |
+
}
|
ggml.c
CHANGED
|
@@ -4221,7 +4221,7 @@ bool ggml_compute_forward_mul_mat_use_blas(
|
|
| 4221 |
const int ne1 = dst->ne[1];
|
| 4222 |
|
| 4223 |
// TODO: find the optimal values for these
|
| 4224 |
-
if (ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) {
|
| 4225 |
//printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
|
| 4226 |
return true;
|
| 4227 |
}
|
|
@@ -4298,7 +4298,6 @@ void ggml_compute_forward_mul_mat_f32(
|
|
| 4298 |
|
| 4299 |
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
| 4300 |
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
| 4301 |
-
GGML_ASSERT(ggml_is_contiguous(src0));
|
| 4302 |
GGML_ASSERT(nb10 == sizeof(float));
|
| 4303 |
|
| 4304 |
if (params->ith != 0) return;
|
|
|
|
| 4221 |
const int ne1 = dst->ne[1];
|
| 4222 |
|
| 4223 |
// TODO: find the optimal values for these
|
| 4224 |
+
if (ggml_is_contiguous(src0) && ggml_is_contiguous(src1) && ne0 >= 32 && ne1 >= 32 && ne10 >= 32) {
|
| 4225 |
//printf("BLAS: %d %d %d\n", ne0, ne1, ne10);
|
| 4226 |
return true;
|
| 4227 |
}
|
|
|
|
| 4298 |
|
| 4299 |
#if defined(GGML_USE_ACCELERATE) || defined(GGML_USE_OPENBLAS)
|
| 4300 |
if (ggml_compute_forward_mul_mat_use_blas(src0, src1, dst)) {
|
|
|
|
| 4301 |
GGML_ASSERT(nb10 == sizeof(float));
|
| 4302 |
|
| 4303 |
if (params->ith != 0) return;
|