Spaces:
Running
Running
| #include "common.cuh" | |
| #include "fattn-common.cuh" | |
| #include "fattn-vec-f32.cuh" | |
| template<int D, int ncols, int parallel_blocks> // D == head size | |
| #if !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) | |
| __launch_bounds__(D, 1) | |
| #endif // !(defined(GGML_USE_HIPBLAS) && defined(__HIP_PLATFORM_AMD__)) | |
| static __global__ void flash_attn_vec_ext_f32( | |
| const char * __restrict__ Q, | |
| const char * __restrict__ K, | |
| const char * __restrict__ V, | |
| const char * __restrict__ mask, | |
| float * __restrict__ dst, | |
| float2 * __restrict__ dst_meta, | |
| const float scale, | |
| const float max_bias, | |
| const float m0, | |
| const float m1, | |
| const uint32_t n_head_log2, | |
| const int ne00, | |
| const int ne01, | |
| const int ne02, | |
| const int ne03, | |
| const int ne10, | |
| const int ne11, | |
| const int ne12, | |
| const int ne13, | |
| const int ne31, | |
| const int nb31, | |
| const int nb01, | |
| const int nb02, | |
| const int nb03, | |
| const int nb11, | |
| const int nb12, | |
| const int nb13, | |
| const int ne0, | |
| const int ne1, | |
| const int ne2, | |
| const int ne3) { | |
| //In this kernel Q, K, V are matrices while i, j, k are matrix indices. | |
| const int ic0 = (blockIdx.x / parallel_blocks) * ncols; // Index of the Q/QKV column to work on. | |
| const int ip = blockIdx.x % parallel_blocks; // Index in group of blocks running for the same column in parallel. | |
| const int gqa_ratio = ne02 / ne12; // With grouped query attention there are > 1 Q matrices per K, V matrix. | |
| const float2 * Q_f2 = (const float2 *) (Q + nb02* blockIdx.y + nb01*ic0); | |
| const half2 * K_h2 = (const half2 *) (K + nb12*(blockIdx.y / gqa_ratio)); | |
| const half * V_h = (const half *) (V + nb12*(blockIdx.y / gqa_ratio)); // K and V have same shape | |
| const half * maskh = (const half *) mask + ne11*ic0; | |
| const int stride_KV = nb11 / sizeof(half); | |
| const int stride_KV2 = nb11 / sizeof(half2); | |
| float slope = 1.0f; | |
| // ALiBi | |
| if (max_bias > 0.0f) { | |
| const int h = blockIdx.y; | |
| const float base = h < n_head_log2 ? m0 : m1; | |
| const int exph = h < n_head_log2 ? h + 1 : 2*(h - n_head_log2) + 1; | |
| slope = powf(base, exph); | |
| } | |
| static_assert(D % (2*WARP_SIZE) == 0, "D not divisible by 2*WARP_SIZE == 64."); | |
| constexpr int nwarps = D / WARP_SIZE; | |
| const int tid = WARP_SIZE*threadIdx.y + threadIdx.x; | |
| __builtin_assume(tid < D); | |
| __shared__ float KQ[ncols*D]; | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| KQ[j*D + tid] = -FLT_MAX/2.0f; | |
| } | |
| float kqmax[ncols]; | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| kqmax[j] = -FLT_MAX/2.0f; | |
| } | |
| float kqsum[ncols] = {0.0f}; | |
| __shared__ float kqmax_shared[ncols][WARP_SIZE]; | |
| __shared__ float kqsum_shared[ncols][WARP_SIZE]; | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| if (threadIdx.y == 0) { | |
| kqmax_shared[j][threadIdx.x] = -FLT_MAX/2.0f; | |
| kqsum_shared[j][threadIdx.x] = 0.0f; | |
| } | |
| } | |
| __syncthreads(); | |
| // Convert Q to half2 and store in registers: | |
| float2 Q_h2[ncols][D/(2*WARP_SIZE)]; | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| #pragma unroll | |
| for (int i0 = 0; i0 < D/2; i0 += WARP_SIZE) { | |
| const int i = i0 + threadIdx.x; | |
| Q_h2[j][i0/WARP_SIZE] = Q_f2[j*(nb01/sizeof(float2)) + i]; | |
| Q_h2[j][i0/WARP_SIZE].x *= scale; | |
| Q_h2[j][i0/WARP_SIZE].y *= scale; | |
| } | |
| } | |
| float VKQ[ncols] = {0.0f}; | |
| const int k_start = parallel_blocks == 1 ? 0 : ip*D; | |
| for (int k_VKQ_0 = k_start; k_VKQ_0 < ne11; k_VKQ_0 += parallel_blocks*D) { | |
| // Calculate KQ tile and keep track of new maximum KQ values: | |
| float kqmax_new_arr[ncols]; | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| kqmax_new_arr[j] = kqmax[j]; | |
| } | |
| #pragma unroll | |
| for (int i_KQ_0 = 0; i_KQ_0 < D; i_KQ_0 += nwarps) { | |
| const int i_KQ = i_KQ_0 + threadIdx.y; | |
| if ((i_KQ_0 + nwarps > D && i_KQ >= D) || (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + i_KQ >= ne11)) { | |
| break; | |
| } | |
| float sum[ncols] = {0.0f}; | |
| #pragma unroll | |
| for (int k_KQ_0 = 0; k_KQ_0 < D/2; k_KQ_0 += WARP_SIZE) { | |
| const int k_KQ = k_KQ_0 + threadIdx.x; | |
| const half2 K_ik = K_h2[(k_VKQ_0 + i_KQ)*stride_KV2 + k_KQ]; | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| sum[j] += __low2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].x; | |
| sum[j] += __high2float(K_ik) * Q_h2[j][k_KQ_0/WARP_SIZE].y; | |
| } | |
| } | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| sum[j] = warp_reduce_sum(sum[j]); | |
| sum[j] += mask ? slope*__half2float(maskh[j*ne11 + k_VKQ_0 + i_KQ]) : 0.0f; | |
| kqmax_new_arr[j] = fmaxf(kqmax_new_arr[j], sum[j]); | |
| if (threadIdx.x == 0) { | |
| KQ[j*D + i_KQ] = sum[j]; | |
| } | |
| } | |
| } | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| float kqmax_new_j = kqmax_new_arr[j]; | |
| kqmax_new_j = warp_reduce_max(kqmax_new_j); | |
| if (threadIdx.x == 0) { | |
| kqmax_shared[j][threadIdx.y] = kqmax_new_j; | |
| } | |
| } | |
| __syncthreads(); | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| float kqmax_new_j = kqmax_shared[j][threadIdx.x]; | |
| kqmax_new_j = warp_reduce_max(kqmax_new_j); | |
| const float KQ_max_scale = expf(kqmax[j] - kqmax_new_j); | |
| kqmax[j] = kqmax_new_j; | |
| const float val = expf(KQ[j*D + tid] - kqmax[j]); | |
| kqsum[j] = kqsum[j]*KQ_max_scale + val; | |
| KQ[j*D + tid] = val; | |
| VKQ[j] *= KQ_max_scale; | |
| } | |
| __syncthreads(); | |
| #pragma unroll | |
| for (int k = 0; k < D; ++k) { | |
| if (FATTN_KQ_STRIDE % D != 0 && k_VKQ_0 + k >= ne11) { | |
| break; | |
| } | |
| const float V_ki = __half2float(V_h[(k_VKQ_0 + k)*stride_KV + tid]); | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| VKQ[j] += V_ki*KQ[j*D + k]; | |
| } | |
| } | |
| __syncthreads(); | |
| } | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| kqsum[j] = warp_reduce_sum(kqsum[j]); | |
| if (threadIdx.x == 0) { | |
| kqsum_shared[j][threadIdx.y] = kqsum[j]; | |
| } | |
| } | |
| __syncthreads(); | |
| #pragma unroll | |
| for (int j_VKQ = 0; j_VKQ < ncols; ++j_VKQ) { | |
| kqsum[j_VKQ] = kqsum_shared[j_VKQ][threadIdx.x]; | |
| kqsum[j_VKQ] = warp_reduce_sum(kqsum[j_VKQ]); | |
| float dst_val = VKQ[j_VKQ]; | |
| if (parallel_blocks == 1) { | |
| dst_val /= kqsum[j_VKQ]; | |
| } | |
| const int j_dst = (ic0 + j_VKQ)*parallel_blocks + ip; | |
| dst[j_dst*D*gridDim.y + D*blockIdx.y + tid] = dst_val; | |
| } | |
| if (parallel_blocks != 1 && tid != 0) { | |
| #pragma unroll | |
| for (int j = 0; j < ncols; ++j) { | |
| dst_meta[(ic0 + j)*gridDim.y*parallel_blocks + blockIdx.y*parallel_blocks + ip] = make_float2(kqmax[j], kqsum[j]); | |
| } | |
| } | |
| } | |
| template <int D, int cols_per_block, int parallel_blocks> void launch_fattn_vec_f32( | |
| const ggml_tensor * Q, const ggml_tensor * K, const ggml_tensor * V, ggml_tensor * KQV, const ggml_tensor * mask, | |
| ggml_cuda_pool & pool, cudaStream_t main_stream | |
| ) { | |
| ggml_cuda_pool_alloc<float> dst_tmp(pool); | |
| ggml_cuda_pool_alloc<float2> dst_tmp_meta(pool); | |
| if (parallel_blocks > 1) { | |
| dst_tmp.alloc(parallel_blocks*ggml_nelements(KQV)); | |
| dst_tmp_meta.alloc(parallel_blocks*ggml_nrows(KQV)); | |
| } | |
| constexpr int nwarps = (D + WARP_SIZE - 1) / WARP_SIZE; | |
| const dim3 block_dim(WARP_SIZE, nwarps, 1); | |
| const dim3 blocks_num(parallel_blocks*((Q->ne[1] + cols_per_block - 1) / cols_per_block), Q->ne[2], Q->ne[3]); | |
| const int shmem = 0; | |
| float scale = 1.0f; | |
| float max_bias = 0.0f; | |
| memcpy(&scale, (float *) KQV->op_params + 0, sizeof(float)); | |
| memcpy(&max_bias, (float *) KQV->op_params + 1, sizeof(float)); | |
| const uint32_t n_head = Q->ne[2]; | |
| const uint32_t n_head_log2 = 1u << (uint32_t) floorf(log2f((float) n_head)); | |
| const float m0 = powf(2.0f, -(max_bias ) / n_head_log2); | |
| const float m1 = powf(2.0f, -(max_bias / 2.0f) / n_head_log2); | |
| flash_attn_vec_ext_f32<D, cols_per_block, parallel_blocks> | |
| <<<blocks_num, block_dim, shmem, main_stream>>> ( | |
| (const char *) Q->data, | |
| (const char *) K->data, | |
| (const char *) V->data, | |
| mask ? ((const char *) mask->data) : nullptr, | |
| parallel_blocks == 1 ? (float *) KQV->data : dst_tmp.ptr, dst_tmp_meta.ptr, | |
| scale, max_bias, m0, m1, n_head_log2, | |
| Q->ne[0], Q->ne[1], Q->ne[2], Q->ne[3], | |
| K->ne[0], K->ne[1], K->ne[2], K->ne[3], | |
| mask ? mask->ne[1] : 0, mask ? mask->nb[1] : 0, | |
| Q->nb[1], Q->nb[2], Q->nb[3], | |
| K->nb[1], K->nb[2], K->nb[3], | |
| KQV->ne[0], KQV->ne[1], KQV->ne[2], KQV->ne[3] | |
| ); | |
| CUDA_CHECK(cudaGetLastError()); | |
| if (parallel_blocks == 1) { | |
| return; | |
| } | |
| const dim3 block_dim_combine(D, 1, 1); | |
| const dim3 blocks_num_combine(Q->ne[1], blocks_num.y, blocks_num.z); | |
| const int shmem_combine = 0; | |
| flash_attn_combine_results<D, parallel_blocks> | |
| <<<blocks_num_combine, block_dim_combine, shmem_combine, main_stream>>> | |
| (dst_tmp.ptr, dst_tmp_meta.ptr, (float *) KQV->data); | |
| CUDA_CHECK(cudaGetLastError()); | |
| } | |
| void ggml_cuda_flash_attn_ext_vec_f32(ggml_backend_cuda_context & ctx, ggml_tensor * dst) { | |
| const ggml_tensor * Q = dst->src[0]; | |
| const ggml_tensor * K = dst->src[1]; | |
| const ggml_tensor * V = dst->src[2]; | |
| const ggml_tensor * mask = dst->src[3]; | |
| ggml_tensor * KQV = dst; | |
| GGML_ASSERT(Q->ne[0] == 64 || Q->ne[0] == 128 && "FlashAttention without tensor cores only supports head sizes 64 and 128."); | |
| if (Q->ne[1] == 1) { | |
| constexpr int cols_per_block = 1; | |
| constexpr int parallel_blocks = 4; | |
| switch (Q->ne[0]) { | |
| case 64: | |
| launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| case 128: | |
| launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| default: | |
| GGML_ASSERT(false); | |
| break; | |
| } | |
| return; | |
| } | |
| if (Q->ne[1] == 2) { | |
| constexpr int cols_per_block = 2; | |
| constexpr int parallel_blocks = 4; | |
| switch (Q->ne[0]) { | |
| case 64: | |
| launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| case 128: | |
| launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| default: | |
| GGML_ASSERT(false); | |
| break; | |
| } | |
| return; | |
| } | |
| if (Q->ne[1] <= 4) { | |
| constexpr int cols_per_block = 4; | |
| constexpr int parallel_blocks = 4; | |
| switch (Q->ne[0]) { | |
| case 64: | |
| launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| case 128: | |
| launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| default: | |
| GGML_ASSERT(false); | |
| break; | |
| } | |
| return; | |
| } | |
| if (Q->ne[1] <= 8) { | |
| constexpr int cols_per_block = 8; | |
| constexpr int parallel_blocks = 4; | |
| switch (Q->ne[0]) { | |
| case 64: | |
| launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| case 128: | |
| launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| default: | |
| GGML_ASSERT(false); | |
| break; | |
| } | |
| return; | |
| } | |
| constexpr int cols_per_block = 8; | |
| constexpr int parallel_blocks = 1; | |
| switch (Q->ne[0]) { | |
| case 64: | |
| launch_fattn_vec_f32< 64, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| case 128: | |
| launch_fattn_vec_f32<128, cols_per_block, parallel_blocks>(Q, K, V, KQV, mask, ctx.pool(), ctx.stream()); | |
| break; | |
| default: | |
| GGML_ASSERT(false); | |
| break; | |
| } | |
| } | |