Spaces:
Running
Running
| //#define USE_FLASH_FF | |
| // available whisper models | |
| enum e_model { | |
| MODEL_UNKNOWN, | |
| MODEL_TINY, | |
| MODEL_BASE, | |
| MODEL_SMALL, | |
| MODEL_MEDIUM, | |
| MODEL_LARGE, | |
| }; | |
| static const std::map<std::string, std::pair<int, std::string>> g_lang = { | |
| { "en", { 0, "english", } }, | |
| { "zh", { 1, "chinese", } }, | |
| { "de", { 2, "german", } }, | |
| { "es", { 3, "spanish", } }, | |
| { "ru", { 4, "russian", } }, | |
| { "ko", { 5, "korean", } }, | |
| { "fr", { 6, "french", } }, | |
| { "ja", { 7, "japanese", } }, | |
| { "pt", { 8, "portuguese", } }, | |
| { "tr", { 9, "turkish", } }, | |
| { "pl", { 10, "polish", } }, | |
| { "ca", { 11, "catalan", } }, | |
| { "nl", { 12, "dutch", } }, | |
| { "ar", { 13, "arabic", } }, | |
| { "sv", { 14, "swedish", } }, | |
| { "it", { 15, "italian", } }, | |
| { "id", { 16, "indonesian", } }, | |
| { "hi", { 17, "hindi", } }, | |
| { "fi", { 18, "finnish", } }, | |
| { "vi", { 19, "vietnamese", } }, | |
| { "iw", { 20, "hebrew", } }, | |
| { "uk", { 21, "ukrainian", } }, | |
| { "el", { 22, "greek", } }, | |
| { "ms", { 23, "malay", } }, | |
| { "cs", { 24, "czech", } }, | |
| { "ro", { 25, "romanian", } }, | |
| { "da", { 26, "danish", } }, | |
| { "hu", { 27, "hungarian", } }, | |
| { "ta", { 28, "tamil", } }, | |
| { "no", { 29, "norwegian", } }, | |
| { "th", { 30, "thai", } }, | |
| { "ur", { 31, "urdu", } }, | |
| { "hr", { 32, "croatian", } }, | |
| { "bg", { 33, "bulgarian", } }, | |
| { "lt", { 34, "lithuanian", } }, | |
| { "la", { 35, "latin", } }, | |
| { "mi", { 36, "maori", } }, | |
| { "ml", { 37, "malayalam", } }, | |
| { "cy", { 38, "welsh", } }, | |
| { "sk", { 39, "slovak", } }, | |
| { "te", { 40, "telugu", } }, | |
| { "fa", { 41, "persian", } }, | |
| { "lv", { 42, "latvian", } }, | |
| { "bn", { 43, "bengali", } }, | |
| { "sr", { 44, "serbian", } }, | |
| { "az", { 45, "azerbaijani", } }, | |
| { "sl", { 46, "slovenian", } }, | |
| { "kn", { 47, "kannada", } }, | |
| { "et", { 48, "estonian", } }, | |
| { "mk", { 49, "macedonian", } }, | |
| { "br", { 50, "breton", } }, | |
| { "eu", { 51, "basque", } }, | |
| { "is", { 52, "icelandic", } }, | |
| { "hy", { 53, "armenian", } }, | |
| { "ne", { 54, "nepali", } }, | |
| { "mn", { 55, "mongolian", } }, | |
| { "bs", { 56, "bosnian", } }, | |
| { "kk", { 57, "kazakh", } }, | |
| { "sq", { 58, "albanian", } }, | |
| { "sw", { 59, "swahili", } }, | |
| { "gl", { 60, "galician", } }, | |
| { "mr", { 61, "marathi", } }, | |
| { "pa", { 62, "punjabi", } }, | |
| { "si", { 63, "sinhala", } }, | |
| { "km", { 64, "khmer", } }, | |
| { "sn", { 65, "shona", } }, | |
| { "yo", { 66, "yoruba", } }, | |
| { "so", { 67, "somali", } }, | |
| { "af", { 68, "afrikaans", } }, | |
| { "oc", { 69, "occitan", } }, | |
| { "ka", { 70, "georgian", } }, | |
| { "be", { 71, "belarusian", } }, | |
| { "tg", { 72, "tajik", } }, | |
| { "sd", { 73, "sindhi", } }, | |
| { "gu", { 74, "gujarati", } }, | |
| { "am", { 75, "amharic", } }, | |
| { "yi", { 76, "yiddish", } }, | |
| { "lo", { 77, "lao", } }, | |
| { "uz", { 78, "uzbek", } }, | |
| { "fo", { 79, "faroese", } }, | |
| { "ht", { 80, "haitian creole", } }, | |
| { "ps", { 81, "pashto", } }, | |
| { "tk", { 82, "turkmen", } }, | |
| { "nn", { 83, "nynorsk", } }, | |
| { "mt", { 84, "maltese", } }, | |
| { "sa", { 85, "sanskrit", } }, | |
| { "lb", { 86, "luxembourgish", } }, | |
| { "my", { 87, "myanmar", } }, | |
| { "bo", { 88, "tibetan", } }, | |
| { "tl", { 89, "tagalog", } }, | |
| { "mg", { 90, "malagasy", } }, | |
| { "as", { 91, "assamese", } }, | |
| { "tt", { 92, "tatar", } }, | |
| { "haw", { 93, "hawaiian", } }, | |
| { "ln", { 94, "lingala", } }, | |
| { "ha", { 95, "hausa", } }, | |
| { "ba", { 96, "bashkir", } }, | |
| { "jw", { 97, "javanese", } }, | |
| { "su", { 98, "sundanese", } }, | |
| }; | |
| static const size_t MB = 1024*1024; | |
| static const std::map<e_model, size_t> MEM_REQ_MODEL = { | |
| { MODEL_TINY, 86ull*MB }, | |
| { MODEL_BASE, 165ull*MB }, | |
| { MODEL_SMALL, 540ull*MB }, | |
| { MODEL_MEDIUM, 1650ull*MB }, | |
| { MODEL_LARGE, 3260ull*MB }, | |
| }; | |
| static const std::map<e_model, size_t> MEM_REQ_ENCODE = { | |
| { MODEL_TINY, 80ull*MB }, | |
| { MODEL_BASE, 128ull*MB }, | |
| { MODEL_SMALL, 300ull*MB }, | |
| { MODEL_MEDIUM, 680ull*MB }, | |
| { MODEL_LARGE, 1100ull*MB }, | |
| }; | |
| static const std::map<e_model, size_t> MEM_REQ_ENCODE_LAYER = { | |
| { MODEL_TINY, 104ull*MB }, | |
| { MODEL_BASE, 138ull*MB }, | |
| { MODEL_SMALL, 208ull*MB }, | |
| { MODEL_MEDIUM, 280ull*MB }, | |
| { MODEL_LARGE, 354ull*MB }, | |
| }; | |
| static const std::map<e_model, size_t> MEM_REQ_DECODE = { | |
| { MODEL_TINY, 200ull*MB }, | |
| { MODEL_BASE, 202ull*MB }, | |
| { MODEL_SMALL, 204ull*MB }, | |
| { MODEL_MEDIUM, 206ull*MB }, | |
| { MODEL_LARGE, 208ull*MB }, | |
| }; | |
| static const std::map<e_model, size_t> MEM_REQ_DECODE_LAYER = { | |
| { MODEL_TINY, 32ull*MB }, | |
| { MODEL_BASE, 44ull*MB }, | |
| { MODEL_SMALL, 64ull*MB }, | |
| { MODEL_MEDIUM, 84ull*MB }, | |
| { MODEL_LARGE, 110ull*MB }, | |
| }; | |
| struct whisper_mel { | |
| int n_len; | |
| int n_mel; | |
| std::vector<float> data; | |
| }; | |
| struct whisper_filters { | |
| int32_t n_mel; | |
| int32_t n_fft; | |
| std::vector<float> data; | |
| }; | |
| struct whisper_vocab { | |
| using id = int32_t; | |
| using token = std::string; | |
| int n_vocab = 51864; | |
| std::map<token, id> token_to_id; | |
| std::map<id, token> id_to_token; | |
| id token_eot = 50256; | |
| id token_sot = 50257; | |
| id token_prev = 50360; | |
| id token_solm = 50361; // ?? | |
| id token_not = 50362; // no timestamps | |
| id token_beg = 50363; | |
| // available tasks | |
| static const id token_translate = 50358; | |
| static const id token_transcribe = 50359; | |
| bool is_multilingual() const { | |
| return n_vocab == 51865; | |
| } | |
| }; | |
| struct whisper_segment { | |
| int64_t t0; | |
| int64_t t1; | |
| std::string text; | |
| std::vector<whisper_token_data> tokens; | |
| }; | |
| // medium | |
| // hparams: { | |
| // 'n_mels': 80, | |
| // 'n_vocab': 51864, | |
| // 'n_audio_ctx': 1500, | |
| // 'n_audio_state': 1024, | |
| // 'n_audio_head': 16, | |
| // 'n_audio_layer': 24, | |
| // 'n_text_ctx': 448, | |
| // 'n_text_state': 1024, | |
| // 'n_text_head': 16, | |
| // 'n_text_layer': 24 | |
| // } | |
| // | |
| // default hparams (Whisper tiny) | |
| struct whisper_hparams { | |
| int32_t n_vocab = 51864; | |
| int32_t n_audio_ctx = 1500; | |
| int32_t n_audio_state = 384; | |
| int32_t n_audio_head = 6; | |
| int32_t n_audio_layer = 4; | |
| int32_t n_text_ctx = 448; | |
| int32_t n_text_state = 384; | |
| int32_t n_text_head = 6; | |
| int32_t n_text_layer = 4; | |
| int32_t n_mels = 80; | |
| int32_t f16 = 1; | |
| }; | |
| // audio encoding layer | |
| struct whisper_layer_encoder { | |
| // encoder.blocks.*.attn_ln | |
| struct ggml_tensor * attn_ln_0_w; | |
| struct ggml_tensor * attn_ln_0_b; | |
| // encoder.blocks.*.attn.out | |
| struct ggml_tensor * attn_ln_1_w; | |
| struct ggml_tensor * attn_ln_1_b; | |
| // encoder.blocks.*.attn.query | |
| struct ggml_tensor * attn_q_w; | |
| struct ggml_tensor * attn_q_b; | |
| // encoder.blocks.*.attn.key | |
| struct ggml_tensor * attn_k_w; | |
| // encoder.blocks.*.attn.value | |
| struct ggml_tensor * attn_v_w; | |
| struct ggml_tensor * attn_v_b; | |
| // encoder.blocks.*.mlp_ln | |
| struct ggml_tensor * mlp_ln_w; | |
| struct ggml_tensor * mlp_ln_b; | |
| // encoder.blocks.*.mlp.0 | |
| struct ggml_tensor * mlp_0_w; | |
| struct ggml_tensor * mlp_0_b; | |
| // encoder.blocks.*.mlp.2 | |
| struct ggml_tensor * mlp_1_w; | |
| struct ggml_tensor * mlp_1_b; | |
| }; | |
| // token decoding layer | |
| struct whisper_layer_decoder { | |
| // decoder.blocks.*.attn_ln | |
| struct ggml_tensor * attn_ln_0_w; | |
| struct ggml_tensor * attn_ln_0_b; | |
| // decoder.blocks.*.attn.out | |
| struct ggml_tensor * attn_ln_1_w; | |
| struct ggml_tensor * attn_ln_1_b; | |
| // decoder.blocks.*.attn.query | |
| struct ggml_tensor * attn_q_w; | |
| struct ggml_tensor * attn_q_b; | |
| // decoder.blocks.*.attn.key | |
| struct ggml_tensor * attn_k_w; | |
| // decoder.blocks.*.attn.value | |
| struct ggml_tensor * attn_v_w; | |
| struct ggml_tensor * attn_v_b; | |
| // decoder.blocks.*.cross_attn_ln | |
| struct ggml_tensor * cross_attn_ln_0_w; | |
| struct ggml_tensor * cross_attn_ln_0_b; | |
| // decoder.blocks.*.cross_attn.out | |
| struct ggml_tensor * cross_attn_ln_1_w; | |
| struct ggml_tensor * cross_attn_ln_1_b; | |
| // decoder.blocks.*.cross_attn.query | |
| struct ggml_tensor * cross_attn_q_w; | |
| struct ggml_tensor * cross_attn_q_b; | |
| // decoder.blocks.*.cross_attn.key | |
| struct ggml_tensor * cross_attn_k_w; | |
| // decoder.blocks.*.cross_attn.value | |
| struct ggml_tensor * cross_attn_v_w; | |
| struct ggml_tensor * cross_attn_v_b; | |
| // decoder.blocks.*.mlp_ln | |
| struct ggml_tensor * mlp_ln_w; | |
| struct ggml_tensor * mlp_ln_b; | |
| // decoder.blocks.*.mlp.0 | |
| struct ggml_tensor * mlp_0_w; | |
| struct ggml_tensor * mlp_0_b; | |
| // decoder.blocks.*.mlp.2 | |
| struct ggml_tensor * mlp_1_w; | |
| struct ggml_tensor * mlp_1_b; | |
| }; | |
| struct whisper_model { | |
| e_model type = MODEL_UNKNOWN; | |
| whisper_hparams hparams; | |
| whisper_filters filters; | |
| // encoder.positional_embedding | |
| struct ggml_tensor * e_pe; | |
| // encoder.conv1 | |
| struct ggml_tensor * e_conv_1_w; | |
| struct ggml_tensor * e_conv_1_b; | |
| // encoder.conv2 | |
| struct ggml_tensor * e_conv_2_w; | |
| struct ggml_tensor * e_conv_2_b; | |
| // encoder.ln_post | |
| struct ggml_tensor * e_ln_w; | |
| struct ggml_tensor * e_ln_b; | |
| // decoder.positional_embedding | |
| struct ggml_tensor * d_pe; // DD | |
| // decoder.token_embedding | |
| struct ggml_tensor * d_te; // DD | |
| // decoder.ln | |
| struct ggml_tensor * d_ln_w; // DD | |
| struct ggml_tensor * d_ln_b; // DD | |
| std::vector<whisper_layer_encoder> layers_encoder; | |
| std::vector<whisper_layer_decoder> layers_decoder; | |
| // key + value memory | |
| struct ggml_tensor * memory_k; | |
| struct ggml_tensor * memory_v; | |
| struct ggml_tensor * memory_cross_k; | |
| struct ggml_tensor * memory_cross_v; | |
| // context | |
| struct ggml_context * ctx; | |
| struct ggml_context * ctx_mem; | |
| // tensors | |
| int n_loaded; | |
| std::map<std::string, struct ggml_tensor *> tensors; | |
| }; | |
| struct whisper_context { | |
| int64_t t_load_us = 0; | |
| int64_t t_mel_us = 0; | |
| int64_t t_sample_us = 0; | |
| int64_t t_encode_us = 0; | |
| int64_t t_decode_us = 0; | |
| int64_t t_start_us = 0; | |
| std::vector<uint8_t> * buf_model; // the model buffer is read-only and can be shared between processors | |
| std::vector<uint8_t> buf_memory; | |
| std::vector<uint8_t> buf_compute; | |
| std::vector<uint8_t> buf_compute_layer; | |
| whisper_model model; | |
| whisper_vocab vocab; | |
| whisper_mel mel; | |
| std::vector<float> probs; | |
| std::vector<float> logits; | |
| std::vector<whisper_segment> result_all; | |
| std::vector<whisper_token> prompt_past; | |
| }; | |
| // load the model from a ggml file | |
| // | |
| // file format: | |
| // | |
| // - hparams | |
| // - pre-computed mel filters | |
| // - vocab | |
| // - weights | |
| // | |
| // see the convert-pt-to-ggml.py script for details | |
| // | |
| bool whisper_model_load(const std::string & fname, whisper_context & wctx) { | |
| fprintf(stderr, "%s: loading model from '%s'\n", __func__, fname.c_str()); | |
| auto & model = wctx.model; | |
| auto & vocab = wctx.vocab; | |
| auto fin = std::ifstream(fname, std::ios::binary); | |
| if (!fin) { | |
| fprintf(stderr, "%s: failed to open '%s'\n", __func__, fname.c_str()); | |
| return false; | |
| } | |
| // verify magic | |
| { | |
| uint32_t magic; | |
| fin.read((char *) &magic, sizeof(magic)); | |
| if (magic != 0x67676d6c) { | |
| fprintf(stderr, "%s: invalid model file '%s' (bad magic)\n", __func__, fname.c_str()); | |
| return false; | |
| } | |
| } | |
| //load hparams | |
| { | |
| auto & hparams = model.hparams; | |
| fin.read((char *) &hparams.n_vocab, sizeof(hparams.n_vocab)); | |
| fin.read((char *) &hparams.n_audio_ctx, sizeof(hparams.n_audio_ctx)); | |
| fin.read((char *) &hparams.n_audio_state, sizeof(hparams.n_audio_state)); | |
| fin.read((char *) &hparams.n_audio_head, sizeof(hparams.n_audio_head)); | |
| fin.read((char *) &hparams.n_audio_layer, sizeof(hparams.n_audio_layer)); | |
| fin.read((char *) &hparams.n_text_ctx, sizeof(hparams.n_text_ctx)); | |
| fin.read((char *) &hparams.n_text_state, sizeof(hparams.n_text_state)); | |
| fin.read((char *) &hparams.n_text_head, sizeof(hparams.n_text_head)); | |
| fin.read((char *) &hparams.n_text_layer, sizeof(hparams.n_text_layer)); | |
| fin.read((char *) &hparams.n_mels, sizeof(hparams.n_mels)); | |
| fin.read((char *) &hparams.f16, sizeof(hparams.f16)); | |
| assert(hparams.n_text_state == hparams.n_audio_state); | |
| if (hparams.n_audio_layer == 4) { | |
| model.type = e_model::MODEL_TINY; | |
| } | |
| if (hparams.n_audio_layer == 6) { | |
| model.type = e_model::MODEL_BASE; | |
| } | |
| if (hparams.n_audio_layer == 12) { | |
| model.type = e_model::MODEL_SMALL; | |
| } | |
| if (hparams.n_audio_layer == 24) { | |
| model.type = e_model::MODEL_MEDIUM; | |
| } | |
| if (hparams.n_audio_layer == 32) { | |
| model.type = e_model::MODEL_LARGE; | |
| } | |
| fprintf(stderr, "%s: n_vocab = %d\n", __func__, hparams.n_vocab); | |
| fprintf(stderr, "%s: n_audio_ctx = %d\n", __func__, hparams.n_audio_ctx); | |
| fprintf(stderr, "%s: n_audio_state = %d\n", __func__, hparams.n_audio_state); | |
| fprintf(stderr, "%s: n_audio_head = %d\n", __func__, hparams.n_audio_head); | |
| fprintf(stderr, "%s: n_audio_layer = %d\n", __func__, hparams.n_audio_layer); | |
| fprintf(stderr, "%s: n_text_ctx = %d\n", __func__, hparams.n_text_ctx); | |
| fprintf(stderr, "%s: n_text_state = %d\n", __func__, hparams.n_text_state); | |
| fprintf(stderr, "%s: n_text_head = %d\n", __func__, hparams.n_text_head); | |
| fprintf(stderr, "%s: n_text_layer = %d\n", __func__, hparams.n_text_layer); | |
| fprintf(stderr, "%s: n_mels = %d\n", __func__, hparams.n_mels); | |
| fprintf(stderr, "%s: f16 = %d\n", __func__, hparams.f16); | |
| fprintf(stderr, "%s: type = %d\n", __func__, model.type); | |
| wctx.buf_model = new std::vector<uint8_t>(); | |
| wctx.buf_model->resize(MEM_REQ_MODEL.at(model.type)); | |
| wctx.buf_memory.resize(std::max(MEM_REQ_MODEL.at(model.type), MEM_REQ_MODEL.at(model.type))); // TODO: TMP !!! | |
| wctx.buf_compute.resize(std::max(MEM_REQ_ENCODE.at(model.type), MEM_REQ_DECODE.at(model.type))); | |
| wctx.buf_compute_layer.resize(std::max(MEM_REQ_ENCODE_LAYER.at(model.type), MEM_REQ_DECODE_LAYER.at(model.type))); | |
| // this is the total memory required to run the inference | |
| const size_t mem_required = | |
| wctx.buf_model->size() + | |
| wctx.buf_memory.size() + | |
| wctx.buf_compute.size() + | |
| wctx.buf_compute_layer.size(); | |
| fprintf(stderr, "%s: mem_required = %.2f MB\n", __func__, mem_required / 1024.0 / 1024.0); | |
| } | |
| // load mel filters | |
| { | |
| auto & filters = wctx.model.filters; | |
| fin.read((char *) &filters.n_mel, sizeof(filters.n_mel)); | |
| fin.read((char *) &filters.n_fft, sizeof(filters.n_fft)); | |
| filters.data.resize(filters.n_mel * filters.n_fft); | |
| fin.read((char *) filters.data.data(), filters.data.size() * sizeof(float)); | |
| } | |
| // load vocab | |
| { | |
| int32_t n_vocab = 0; | |
| fin.read((char *) &n_vocab, sizeof(n_vocab)); | |
| //if (n_vocab != model.hparams.n_vocab) { | |
| // fprintf(stderr, "%s: invalid model file '%s' (bad vocab size %d != %d)\n", | |
| // __func__, fname.c_str(), n_vocab, model.hparams.n_vocab); | |
| // return false; | |
| //} | |
| std::string word; | |
| for (int i = 0; i < n_vocab; i++) { | |
| uint32_t len; | |
| fin.read((char *) &len, sizeof(len)); | |
| word.resize(len); | |
| fin.read((char *) word.data(), len); | |
| vocab.token_to_id[word] = i; | |
| vocab.id_to_token[i] = word; | |
| //printf("%s: vocab[%d] = '%s'\n", __func__, i, word.c_str()); | |
| } | |
| vocab.n_vocab = model.hparams.n_vocab; | |
| if (vocab.is_multilingual()) { | |
| vocab.token_eot++; | |
| vocab.token_sot++; | |
| vocab.token_prev++; | |
| vocab.token_solm++; | |
| vocab.token_not++; | |
| vocab.token_beg++; | |
| } | |
| if (n_vocab < model.hparams.n_vocab) { | |
| fprintf(stderr, "%s: adding %d extra tokens\n", __func__, model.hparams.n_vocab - n_vocab); | |
| for (int i = n_vocab; i < model.hparams.n_vocab; i++) { | |
| if (i > vocab.token_beg) { | |
| word = "[_TT_" + std::to_string(i - vocab.token_beg) + "]"; | |
| } else if (i == vocab.token_eot) { | |
| word = "[_EOT_]"; | |
| } else if (i == vocab.token_sot) { | |
| word = "[_SOT_]"; | |
| } else if (i == vocab.token_prev) { | |
| word = "[_PREV_]"; | |
| } else if (i == vocab.token_not) { | |
| word = "[_NOT_]"; | |
| } else if (i == vocab.token_beg) { | |
| word = "[_BEG_]"; | |
| } else { | |
| word = "[_extra_token_" + std::to_string(i) + "]"; | |
| } | |
| vocab.token_to_id[word] = i; | |
| vocab.id_to_token[i] = word; | |
| } | |
| } | |
| } | |
| // for the big tensors, we have the option to store the data in 16-bit floats | |
| // in order to save memory and also to speed up the computation | |
| const ggml_type wtype = model.hparams.f16 ? GGML_TYPE_F16 : GGML_TYPE_F32; | |
| size_t ctx_size = 0; | |
| size_t ctx_mem_size = 0; | |
| { | |
| const auto & hparams = model.hparams; | |
| const int n_vocab = hparams.n_vocab; | |
| const int n_audio_ctx = hparams.n_audio_ctx; | |
| const int n_audio_state = hparams.n_audio_state; | |
| const int n_audio_layer = hparams.n_audio_layer; | |
| const int n_text_ctx = hparams.n_text_ctx; | |
| const int n_text_state = hparams.n_text_state; | |
| const int n_text_layer = hparams.n_text_layer; | |
| const int n_mels = hparams.n_mels; | |
| // encoder | |
| { | |
| // TODO: F16 .. maybe not? | |
| ctx_size += n_audio_ctx*n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_pe; | |
| ctx_size += 3*n_mels*n_audio_state*ggml_type_size(wtype); // e_conv_1_w | |
| ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_1_b | |
| ctx_size += 3*n_audio_state*n_audio_state*ggml_type_size(wtype); // e_conv_2_w | |
| ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_conv_2_b | |
| ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_w; | |
| ctx_size += n_audio_state*ggml_type_size(GGML_TYPE_F32); // e_ln_b; | |
| } | |
| // decoder | |
| { | |
| // TODO: F16 .. maybe not? | |
| ctx_size += n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F32); // d_pe; | |
| ctx_size += n_vocab*n_text_state*ggml_type_size(wtype); // d_te; | |
| ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_w; | |
| ctx_size += n_text_state*ggml_type_size(GGML_TYPE_F32); // d_ln_b; | |
| } | |
| // encoder layers | |
| { | |
| ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w | |
| ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b | |
| ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_0_w | |
| ctx_size += n_audio_layer*( 4*n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b | |
| ctx_size += n_audio_layer*(4*n_audio_state*n_audio_state*ggml_type_size(wtype)); // mlp_1_w | |
| ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b | |
| ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w | |
| ctx_size += n_audio_layer*(n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b | |
| ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_q_w | |
| ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b | |
| ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_k_w | |
| ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_v_w | |
| ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b | |
| ctx_size += n_audio_layer*(n_audio_state*n_audio_state*ggml_type_size(wtype)); // attn_ln_1_w | |
| ctx_size += n_audio_layer*( n_audio_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b | |
| } | |
| // decoder layers | |
| { | |
| ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_w | |
| ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_ln_b | |
| ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_0_w | |
| ctx_size += n_text_layer*( 4*n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_0_b | |
| ctx_size += n_text_layer*(4*n_text_state*n_text_state*ggml_type_size(wtype)); // mlp_1_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // mlp_1_b | |
| ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_w | |
| ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_0_b | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_q_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_q_b | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_k_w | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_v_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_v_b | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // attn_ln_1_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // attn_ln_1_b | |
| // | |
| ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_w | |
| ctx_size += n_text_layer*(n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_0_b | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_q_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_q_b | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_k_w | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_v_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_v_b | |
| ctx_size += n_text_layer*(n_text_state*n_text_state*ggml_type_size(wtype)); // cross_attn_ln_1_w | |
| ctx_size += n_text_layer*( n_text_state*ggml_type_size(GGML_TYPE_F32)); // cross_attn_ln_1_b | |
| } | |
| ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_k | |
| ctx_mem_size += n_text_layer*n_text_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_v | |
| ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_k | |
| ctx_mem_size += n_text_layer*n_audio_ctx*n_text_state*ggml_type_size(GGML_TYPE_F16); // memory_cross_v | |
| ctx_size += (15 + 15*n_audio_layer + 24*n_text_layer)*256; // object overhead | |
| fprintf(stderr, "%s: ggml ctx size = %6.2f MB\n", __func__, ctx_size/(1024.0*1024.0)); | |
| } | |
| // create the ggml context | |
| { | |
| struct ggml_init_params params = { | |
| .mem_size = wctx.buf_model->size(), | |
| .mem_buffer = wctx.buf_model->data(), | |
| }; | |
| model.ctx = ggml_init(params); | |
| if (!model.ctx) { | |
| fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
| return false; | |
| } | |
| } | |
| // create the ggml memory context | |
| { | |
| struct ggml_init_params params = { | |
| .mem_size = wctx.buf_memory.size(), | |
| .mem_buffer = wctx.buf_memory.data(), | |
| }; | |
| model.ctx_mem = ggml_init(params); | |
| if (!model.ctx_mem) { | |
| fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
| return false; | |
| } | |
| } | |
| // prepare memory for the weights | |
| { | |
| auto & ctx = model.ctx; | |
| const auto & hparams = model.hparams; | |
| const int n_vocab = hparams.n_vocab; | |
| const int n_audio_ctx = hparams.n_audio_ctx; | |
| const int n_audio_state = hparams.n_audio_state; | |
| const int n_audio_layer = hparams.n_audio_layer; | |
| const int n_text_ctx = hparams.n_text_ctx; | |
| const int n_text_state = hparams.n_text_state; | |
| const int n_text_layer = hparams.n_text_layer; | |
| const int n_mels = hparams.n_mels; | |
| model.layers_encoder.resize(n_audio_layer); | |
| model.layers_decoder.resize(n_text_layer); | |
| // encoder | |
| { | |
| model.e_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_audio_state, n_audio_ctx); | |
| model.e_conv_1_w = ggml_new_tensor_3d(ctx, wtype, 3, n_mels, n_audio_state); | |
| model.e_conv_1_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); | |
| model.e_conv_2_w = ggml_new_tensor_3d(ctx, wtype, 3, n_audio_state, n_audio_state); | |
| model.e_conv_2_b = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, 1, n_audio_state); | |
| model.e_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| model.e_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| // map by name | |
| model.tensors["encoder.positional_embedding"] = model.e_pe; | |
| model.tensors["encoder.conv1.weight"] = model.e_conv_1_w; | |
| model.tensors["encoder.conv1.bias"] = model.e_conv_1_b; | |
| model.tensors["encoder.conv2.weight"] = model.e_conv_2_w; | |
| model.tensors["encoder.conv2.bias"] = model.e_conv_2_b; | |
| model.tensors["encoder.ln_post.weight"] = model.e_ln_w; | |
| model.tensors["encoder.ln_post.bias"] = model.e_ln_b; | |
| for (int i = 0; i < n_audio_layer; ++i) { | |
| auto & layer = model.layers_encoder[i]; | |
| layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, 4*n_audio_state); | |
| layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_audio_state); | |
| layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_audio_state, n_audio_state); | |
| layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); | |
| layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); | |
| layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); | |
| layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_audio_state, n_audio_state); | |
| layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_audio_state); | |
| // map by name | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; | |
| model.tensors["encoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; | |
| } | |
| } | |
| // decoder | |
| { | |
| model.d_pe = ggml_new_tensor_2d(ctx, GGML_TYPE_F32, n_text_state, n_text_ctx); | |
| model.d_te = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_vocab); | |
| model.d_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| model.d_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| // map by name | |
| model.tensors["decoder.positional_embedding"] = model.d_pe; | |
| model.tensors["decoder.token_embedding.weight"] = model.d_te; | |
| model.tensors["decoder.ln.weight"] = model.d_ln_w; | |
| model.tensors["decoder.ln.bias"] = model.d_ln_b; | |
| for (int i = 0; i < n_text_layer; ++i) { | |
| auto & layer = model.layers_decoder[i]; | |
| layer.mlp_ln_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.mlp_ln_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.mlp_0_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, 4*n_text_state); | |
| layer.mlp_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, 4*n_text_state); | |
| layer.mlp_1_w = ggml_new_tensor_2d(ctx, wtype, 4*n_text_state, n_text_state); | |
| layer.mlp_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.cross_attn_ln_0_w = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.cross_attn_ln_0_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.cross_attn_q_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.cross_attn_q_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.cross_attn_k_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.cross_attn_v_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.cross_attn_v_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| layer.cross_attn_ln_1_w = ggml_new_tensor_2d(ctx, wtype, n_text_state, n_text_state); | |
| layer.cross_attn_ln_1_b = ggml_new_tensor_1d(ctx, GGML_TYPE_F32, n_text_state); | |
| // map by name | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.weight"] = layer.mlp_ln_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".mlp_ln.bias"] = layer.mlp_ln_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.weight"] = layer.mlp_0_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.0.bias"] = layer.mlp_0_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.weight"] = layer.mlp_1_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".mlp.2.bias"] = layer.mlp_1_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.weight"] = layer.attn_ln_0_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn_ln.bias"] = layer.attn_ln_0_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.weight"] = layer.attn_q_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.query.bias"] = layer.attn_q_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.key.weight"] = layer.attn_k_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.weight"] = layer.attn_v_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.value.bias"] = layer.attn_v_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.weight"] = layer.attn_ln_1_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".attn.out.bias"] = layer.attn_ln_1_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.weight"] = layer.cross_attn_ln_0_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn_ln.bias"] = layer.cross_attn_ln_0_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.weight"] = layer.cross_attn_q_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.query.bias"] = layer.cross_attn_q_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.key.weight"] = layer.cross_attn_k_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.weight"] = layer.cross_attn_v_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.value.bias"] = layer.cross_attn_v_b; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.weight"] = layer.cross_attn_ln_1_w; | |
| model.tensors["decoder.blocks." + std::to_string(i) + ".cross_attn.out.bias"] = layer.cross_attn_ln_1_b; | |
| } | |
| } | |
| } | |
| // key + value memory | |
| { | |
| auto & ctx = model.ctx_mem; | |
| const auto & hparams = model.hparams; | |
| const int n_text_state = hparams.n_text_state; | |
| const int n_text_layer = hparams.n_text_layer; | |
| const int n_text_ctx = hparams.n_text_ctx; | |
| // key/value memory for the self-attention layer | |
| { | |
| const int n_mem = n_text_layer*n_text_ctx; | |
| const int n_elements = n_text_state*n_mem; | |
| model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| } | |
| // key/value memory for the cross-attention layer | |
| { | |
| const int n_audio_ctx = hparams.n_audio_ctx; | |
| const int n_mem = n_text_layer*n_audio_ctx; | |
| const int n_elements = n_text_state*n_mem; | |
| model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| } | |
| const size_t memory_size = | |
| ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + | |
| ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); | |
| fprintf(stderr, "%s: memory size = %8.2f MB\n", __func__, memory_size/1024.0/1024.0); | |
| } | |
| // load weights | |
| { | |
| size_t total_size = 0; | |
| model.n_loaded = 0; | |
| while (true) { | |
| int32_t n_dims; | |
| int32_t length; | |
| int32_t ftype; | |
| fin.read(reinterpret_cast<char *>(&n_dims), sizeof(n_dims)); | |
| fin.read(reinterpret_cast<char *>(&length), sizeof(length)); | |
| fin.read(reinterpret_cast<char *>(&ftype), sizeof(ftype)); | |
| if (fin.eof()) { | |
| break; | |
| } | |
| int32_t nelements = 1; | |
| int32_t ne[3] = { 1, 1, 1 }; | |
| for (int i = 0; i < n_dims; ++i) { | |
| fin.read(reinterpret_cast<char *>(&ne[i]), sizeof(ne[i])); | |
| nelements *= ne[i]; | |
| } | |
| std::string name(length, 0); | |
| fin.read(&name[0], length); | |
| if (model.tensors.find(name.data()) == model.tensors.end()) { | |
| fprintf(stderr, "%s: unknown tensor '%s' in model file\n", __func__, name.data()); | |
| return false; | |
| } | |
| auto tensor = model.tensors[name.data()]; | |
| if (ggml_nelements(tensor) != nelements) { | |
| fprintf(stderr, "%s: tensor '%s' has wrong size in model file\n", __func__, name.data()); | |
| return false; | |
| } | |
| if (tensor->ne[0] != ne[0] || tensor->ne[1] != ne[1] || tensor->ne[2] != ne[2]) { | |
| fprintf(stderr, "%s: tensor '%s' has wrong shape in model file: got [%d, %d, %d], expected [%d, %d, %d]\n", | |
| __func__, name.data(), tensor->ne[0], tensor->ne[1], tensor->ne[2], ne[0], ne[1], ne[2]); | |
| return false; | |
| } | |
| const size_t bpe = (ftype == 0) ? sizeof(float) : sizeof(ggml_fp16_t); | |
| if (nelements*bpe != ggml_nbytes(tensor)) { | |
| fprintf(stderr, "%s: tensor '%s' has wrong size in model file: got %zu, expected %zu\n", | |
| __func__, name.data(), ggml_nbytes(tensor), nelements*bpe); | |
| return false; | |
| } | |
| fin.read(reinterpret_cast<char *>(tensor->data), ggml_nbytes(tensor)); | |
| //printf("%24s - [%5d, %5d], type = %6s, %6.2f MB\n", name.data(), ne[0], ne[1], ftype == 0 ? "float" : "f16", ggml_nbytes(tensor)/1024.0/1024.0); | |
| total_size += ggml_nbytes(tensor); | |
| model.n_loaded++; | |
| } | |
| fprintf(stderr, "%s: model size = %8.2f MB\n", __func__, total_size/1024.0/1024.0); | |
| if (model.n_loaded == 0) { | |
| fprintf(stderr, "%s: WARN no tensors loaded from model file - assuming empty model for testing\n", __func__); | |
| } else if (model.n_loaded != (int) model.tensors.size()) { | |
| fprintf(stderr, "%s: ERROR not all tensors loaded from model file - expected %zu, got %d\n", __func__, model.tensors.size(), model.n_loaded); | |
| return false; | |
| } | |
| } | |
| fin.close(); | |
| return true; | |
| } | |
| // evaluate the encoder | |
| // | |
| // given audio recording (more specifically, its log mel spectrogram), runs forward pass of the encoder | |
| // part of the transformer model and returns the encoded features | |
| // | |
| // - model: the model | |
| // - n_threads: number of threads to use | |
| // - mel_offset: offset in the mel spectrogram (i.e. audio offset) | |
| // | |
| bool whisper_encode( | |
| whisper_context & wctx, | |
| const int n_threads, | |
| const int mel_offset) { | |
| const auto & model = wctx.model; | |
| const auto & mel_inp = wctx.mel; | |
| const auto & hparams = model.hparams; | |
| const int n_ctx = hparams.n_audio_ctx; | |
| const int n_state = hparams.n_audio_state; | |
| const int n_head = hparams.n_audio_head; | |
| const int n_layer = hparams.n_audio_layer; | |
| const int N = n_ctx; | |
| const int n_mels = hparams.n_mels; | |
| assert(mel_inp.n_mel == n_mels); | |
| struct ggml_init_params params = { | |
| .mem_size = wctx.buf_compute.size(), | |
| .mem_buffer = wctx.buf_compute.data(), | |
| }; | |
| struct ggml_context * ctx0 = ggml_init(params); | |
| struct ggml_tensor * mel = ggml_new_tensor_2d(ctx0, GGML_TYPE_F32, 2*n_ctx, n_mels); | |
| assert(mel->type == GGML_TYPE_F32); | |
| { | |
| float * dst = (float *) mel->data; | |
| memset(dst, 0, ggml_nbytes(mel)); | |
| const int i0 = std::min(mel_offset, mel_inp.n_len); | |
| const int i1 = std::min(mel_offset + 2*n_ctx, mel_inp.n_len); | |
| for (int j = 0; j < mel_inp.n_mel; ++j) { | |
| for (int i = i0; i < i1; ++i) { | |
| dst[j*2*n_ctx + (i - i0)] = mel_inp.data[j*mel_inp.n_len + i]; | |
| } | |
| } | |
| } | |
| struct ggml_tensor * cur; | |
| // convolution + gelu | |
| { | |
| cur = ggml_conv_1d_1s(ctx0, model.e_conv_1_w, mel); | |
| cur = ggml_add(ctx0, | |
| ggml_repeat(ctx0, | |
| model.e_conv_1_b, | |
| cur), | |
| cur); | |
| cur = ggml_gelu(ctx0, cur); | |
| cur = ggml_conv_1d_2s(ctx0, model.e_conv_2_w, cur); | |
| cur = ggml_add(ctx0, | |
| ggml_repeat(ctx0, | |
| model.e_conv_2_b, | |
| cur), | |
| cur); | |
| cur = ggml_gelu(ctx0, cur); | |
| } | |
| cur = ggml_add(ctx0, model.e_pe, ggml_transpose(ctx0, cur)); | |
| struct ggml_tensor * inpL = cur; | |
| for (int il = 0; il < n_layer; ++il) { | |
| const auto & layer = model.layers_encoder[il]; | |
| // create separate context for each layer to reduce memory usage | |
| struct ggml_init_params paramsL = { | |
| .mem_size = wctx.buf_compute_layer.size(), | |
| .mem_buffer = wctx.buf_compute_layer.data(), | |
| }; | |
| struct ggml_context * ctxL = ggml_init(paramsL); | |
| // norm | |
| { | |
| cur = ggml_norm(ctxL, inpL); | |
| // cur = ln_0_w*cur + ln_0_b | |
| cur = ggml_add(ctxL, | |
| ggml_mul(ctxL, | |
| ggml_repeat(ctxL, layer.attn_ln_0_w, cur), | |
| cur), | |
| ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); | |
| } | |
| // self-attention | |
| { | |
| struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, | |
| layer.attn_q_w, | |
| cur); | |
| Qcur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, | |
| layer.attn_q_b, | |
| Qcur), | |
| Qcur); | |
| //Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); | |
| // note: no bias for Key | |
| struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, | |
| layer.attn_k_w, | |
| cur); | |
| //Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); | |
| struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, | |
| layer.attn_v_w, | |
| cur); | |
| Vcur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, | |
| layer.attn_v_b, | |
| Vcur), | |
| Vcur); | |
| // ------ | |
| struct ggml_tensor * Q = | |
| ggml_permute(ctxL, | |
| ggml_cpy(ctxL, | |
| Qcur, | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), | |
| 0, 2, 1, 3); | |
| struct ggml_tensor * K = | |
| ggml_permute(ctxL, | |
| ggml_cpy(ctxL, | |
| Kcur, | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), | |
| 0, 2, 1, 3); | |
| struct ggml_tensor * V = | |
| ggml_cpy(ctxL, | |
| ggml_permute(ctxL, | |
| ggml_reshape_3d(ctxL, | |
| Vcur, | |
| n_state/n_head, n_head, N), | |
| 1, 2, 0, 3), | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, N, n_state/n_head, n_head) | |
| ); | |
| struct ggml_tensor * KQV = ggml_flash_attn(ctxL, Q, K, V, false); | |
| struct ggml_tensor * Q = | |
| ggml_permute(ctxL, | |
| ggml_cpy(ctxL, | |
| Qcur, | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), | |
| 0, 2, 1, 3); | |
| struct ggml_tensor * K = | |
| ggml_permute(ctxL, | |
| ggml_cpy(ctxL, | |
| Kcur, | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), | |
| 0, 2, 1, 3); | |
| // K * Q | |
| struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); | |
| struct ggml_tensor * KQ_scaled = | |
| ggml_scale(ctxL, | |
| KQ, | |
| ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) | |
| ); | |
| struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_scaled); | |
| //struct ggml_tensor * V_trans = | |
| // ggml_permute(ctxL, | |
| // ggml_cpy(ctxL, | |
| // Vcur, | |
| // ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, n_head, N)), | |
| // 1, 2, 0, 3); | |
| //struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); | |
| struct ggml_tensor * V = | |
| ggml_cpy(ctxL, | |
| ggml_permute(ctxL, | |
| ggml_reshape_3d(ctxL, | |
| Vcur, | |
| n_state/n_head, n_head, N), | |
| 0, 2, 1, 3), | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F16, n_state/n_head, N, n_head) | |
| ); | |
| struct ggml_tensor * KQV = ggml_mul_mat(ctxL, ggml_transpose(ctxL, V), KQ_soft_max); | |
| struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); | |
| cur = ggml_cpy(ctxL, | |
| KQV_merged, | |
| ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); | |
| } | |
| // projection | |
| { | |
| cur = ggml_mul_mat(ctxL, | |
| layer.attn_ln_1_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.attn_ln_1_b, cur), | |
| cur); | |
| } | |
| // add the input | |
| cur = ggml_add(ctxL, cur, inpL); | |
| struct ggml_tensor * inpFF = cur; | |
| // feed-forward network | |
| { | |
| // norm | |
| { | |
| cur = ggml_norm(ctxL, inpFF); | |
| // cur = mlp_ln_w*cur + mlp_ln_b | |
| cur = ggml_add(ctxL, | |
| ggml_mul(ctxL, | |
| ggml_repeat(ctxL, layer.mlp_ln_w, cur), | |
| cur), | |
| ggml_repeat(ctxL, layer.mlp_ln_b, cur)); | |
| } | |
| cur = ggml_flash_ff(ctxL, | |
| ggml_cpy(ctxL, cur, ggml_new_tensor_2d(ctxL, GGML_TYPE_F16, n_state, N)), | |
| layer.mlp_0_w, layer.mlp_0_b, layer.mlp_1_w, layer.mlp_1_b); | |
| // fully connected | |
| cur = ggml_mul_mat(ctxL, | |
| layer.mlp_0_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.mlp_0_b, cur), | |
| cur); | |
| // GELU activation | |
| cur = ggml_gelu(ctxL, cur); | |
| // projection | |
| cur = ggml_mul_mat(ctxL, | |
| layer.mlp_1_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.mlp_1_b, cur), | |
| cur); | |
| } | |
| // output from this layer | |
| struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); | |
| { | |
| struct ggml_cgraph gf = {}; | |
| gf.n_threads = n_threads; | |
| ggml_build_forward_expand(&gf, inpO); | |
| ggml_graph_compute (ctxL, &gf); | |
| //ggml_graph_print(&gf); | |
| } | |
| // TODO: this is a hack to have per-layer computation graphs - need to come up with something better | |
| // input for next layer (inpO -> inpL) | |
| memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); | |
| inpL->op = GGML_OP_NONE; | |
| inpL->src0 = NULL; | |
| inpL->src1 = NULL; | |
| //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); | |
| ggml_free(ctxL); | |
| } | |
| cur = inpL; | |
| // norm | |
| { | |
| cur = ggml_norm(ctx0, cur); | |
| // cur = ln_f_g*cur + ln_f_b | |
| cur = ggml_add(ctx0, | |
| ggml_mul(ctx0, | |
| ggml_repeat(ctx0, model.e_ln_w, cur), | |
| cur), | |
| ggml_repeat(ctx0, model.e_ln_b, cur)); | |
| } | |
| // run the computation | |
| { | |
| struct ggml_cgraph gf = {}; | |
| gf.n_threads = n_threads; | |
| ggml_build_forward_expand(&gf, cur); | |
| ggml_graph_compute (ctx0, &gf); | |
| //ggml_graph_print(&gf); | |
| } | |
| // cur | |
| //{ | |
| // printf("ne0 = %d\n", cur->ne[0]); | |
| // printf("ne1 = %d\n", cur->ne[1]); | |
| // for (int i = 0; i < 10; ++i) { | |
| // printf("%8.4f ", ((float *)(cur->data))[i]); | |
| // } | |
| // printf("... "); | |
| // for (int i = cur->ne[0] - 10; i < cur->ne[0]; ++i) { | |
| // printf("%8.4f ", ((float *)(cur->data))[i]); | |
| // } | |
| // printf("\n"); | |
| //} | |
| // pre-compute cross-attention memory | |
| { | |
| struct ggml_cgraph gf = {}; | |
| gf.n_threads = n_threads; | |
| // TODO: hack to disconnect the encoded features from the previous graph | |
| cur->op = GGML_OP_NONE; | |
| cur->src0 = NULL; | |
| cur->src1 = NULL; | |
| for (int il = 0; il < model.hparams.n_text_layer; ++il) { | |
| auto & layer = model.layers_decoder[il]; | |
| struct ggml_tensor * Kcross = ggml_mul_mat(ctx0, | |
| layer.cross_attn_k_w, | |
| cur); | |
| Kcross = ggml_scale(ctx0, Kcross, ggml_new_f32(ctx0, pow(float(n_state)/n_head, -0.25))); | |
| struct ggml_tensor * Vcross = ggml_mul_mat(ctx0, | |
| layer.cross_attn_v_w, | |
| cur); | |
| Vcross = ggml_add(ctx0, | |
| ggml_repeat(ctx0, | |
| layer.cross_attn_v_b, | |
| Vcross), | |
| Vcross); | |
| struct ggml_tensor * k = ggml_view_1d(ctx0, model.memory_cross_k, n_state*n_ctx, (ggml_element_size(model.memory_cross_k)*n_state)*(il*n_ctx)); | |
| struct ggml_tensor * v = ggml_view_1d(ctx0, model.memory_cross_v, n_state*n_ctx, (ggml_element_size(model.memory_cross_v)*n_state)*(il*n_ctx)); | |
| ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Kcross, k)); | |
| ggml_build_forward_expand(&gf, ggml_cpy(ctx0, Vcross, v)); | |
| } | |
| ggml_graph_compute(ctx0, &gf); | |
| } | |
| //////////////////////////////////////////////////////////////////////////// | |
| //printf("%s: used_mem = %f MB\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0); | |
| ggml_free(ctx0); | |
| return true; | |
| } | |
| // evaluate the decoder | |
| // | |
| // given text prompt + audio features -> predicts the probabilities for the next token | |
| // | |
| // - model: the model | |
| // - n_threads: number of threads to use | |
| // - tokens: text prompt | |
| // - n_tokens: number of tokens in the prompt | |
| // - n_past: number of past tokens to prefix the prompt with | |
| // | |
| bool whisper_decode( | |
| whisper_context & wctx, | |
| const int n_threads, | |
| const whisper_token * tokens, | |
| const int n_tokens, | |
| const int n_past) { | |
| const auto & model = wctx.model; | |
| const auto & hparams = model.hparams; | |
| auto & logits_out = wctx.logits; | |
| auto & probs_out = wctx.probs; | |
| const int n_vocab = hparams.n_vocab; | |
| const int n_ctx = hparams.n_text_ctx; | |
| const int n_state = hparams.n_text_state; | |
| const int n_head = hparams.n_text_head; | |
| const int n_layer = hparams.n_text_layer; | |
| const int N = n_tokens; | |
| const int M = hparams.n_audio_ctx; | |
| struct ggml_init_params params = { | |
| .mem_size = wctx.buf_compute.size(), | |
| .mem_buffer = wctx.buf_compute.data(), | |
| }; | |
| struct ggml_context * ctx0 = ggml_init(params); | |
| struct ggml_tensor * embd = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
| memcpy(embd->data, tokens, N*ggml_element_size(embd)); | |
| struct ggml_tensor * position = ggml_new_tensor_1d(ctx0, GGML_TYPE_I32, N); | |
| for (int i = 0; i < N; ++i) { | |
| ((int32_t *) position->data)[i] = n_past + i; | |
| } | |
| // token encoding + position encoding | |
| struct ggml_tensor * cur = | |
| ggml_add(ctx0, | |
| ggml_get_rows(ctx0, model.d_te, embd), | |
| ggml_get_rows(ctx0, model.d_pe, position)); | |
| struct ggml_tensor * inpL = cur; | |
| for (int il = 0; il < n_layer; ++il) { | |
| const auto & layer = model.layers_decoder[il]; | |
| struct ggml_init_params paramsL = { | |
| .mem_size = wctx.buf_compute_layer.size(), | |
| .mem_buffer = wctx.buf_compute_layer.data(), | |
| }; | |
| struct ggml_context * ctxL = ggml_init(paramsL); | |
| struct ggml_cgraph gf = {}; | |
| gf.n_threads = n_threads; | |
| // norm | |
| { | |
| cur = ggml_norm(ctxL, inpL); | |
| // cur = ln_0_w*cur + ln_0_b | |
| cur = ggml_add(ctxL, | |
| ggml_mul(ctxL, | |
| ggml_repeat(ctxL, layer.attn_ln_0_w, cur), | |
| cur), | |
| ggml_repeat(ctxL, layer.attn_ln_0_b, cur)); | |
| } | |
| // self-attention | |
| { | |
| struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, | |
| layer.attn_q_w, | |
| cur); | |
| Qcur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, | |
| layer.attn_q_b, | |
| Qcur), | |
| Qcur); | |
| Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); | |
| // note: no bias for Key | |
| struct ggml_tensor * Kcur = ggml_mul_mat(ctxL, | |
| layer.attn_k_w, | |
| cur); | |
| Kcur = ggml_scale(ctxL, Kcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); | |
| struct ggml_tensor * Vcur = ggml_mul_mat(ctxL, | |
| layer.attn_v_w, | |
| cur); | |
| Vcur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, | |
| layer.attn_v_b, | |
| Vcur), | |
| Vcur); | |
| // store key and value to memory | |
| { | |
| struct ggml_tensor * k = ggml_view_1d(ctxL, model.memory_k, N*n_state, (ggml_element_size(model.memory_k)*n_state)*(il*n_ctx + n_past)); | |
| struct ggml_tensor * v = ggml_view_1d(ctxL, model.memory_v, N*n_state, (ggml_element_size(model.memory_v)*n_state)*(il*n_ctx + n_past)); | |
| ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Kcur, k)); | |
| ggml_build_forward_expand(&gf, ggml_cpy(ctxL, Vcur, v)); | |
| } | |
| // ------ | |
| struct ggml_tensor * Q = | |
| ggml_permute(ctxL, | |
| ggml_cpy(ctxL, | |
| Qcur, | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), | |
| 0, 2, 1, 3); | |
| struct ggml_tensor * K = | |
| ggml_permute(ctxL, | |
| ggml_reshape_3d(ctxL, | |
| ggml_view_1d(ctxL, model.memory_k, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_k)*n_state), | |
| n_state/n_head, n_head, n_past + N), | |
| 0, 2, 1, 3); | |
| // K * Q | |
| struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); | |
| //struct ggml_tensor * KQ_scaled = | |
| // ggml_scale(ctxL, | |
| // KQ, | |
| // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) | |
| // ); | |
| struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ, n_past); | |
| struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ_masked); | |
| struct ggml_tensor * V_trans = | |
| ggml_permute(ctxL, | |
| ggml_reshape_3d(ctxL, | |
| ggml_view_1d(ctxL, model.memory_v, (n_past + N)*n_state, il*n_ctx*ggml_element_size(model.memory_v)*n_state), | |
| n_state/n_head, n_head, n_past + N), | |
| 1, 2, 0, 3); | |
| struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); | |
| struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); | |
| cur = ggml_cpy(ctxL, | |
| KQV_merged, | |
| ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); | |
| } | |
| { | |
| cur = ggml_mul_mat(ctxL, | |
| layer.attn_ln_1_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.attn_ln_1_b, cur), | |
| cur); | |
| } | |
| // add the input | |
| struct ggml_tensor * inpCA = ggml_add(ctxL, cur, inpL); | |
| // norm | |
| { | |
| cur = ggml_norm(ctxL, inpCA); // note: we use inpCA here | |
| // cur = ln_0_w*cur + ln_0_b | |
| cur = ggml_add(ctxL, | |
| ggml_mul(ctxL, | |
| ggml_repeat(ctxL, layer.cross_attn_ln_0_w, cur), | |
| cur), | |
| ggml_repeat(ctxL, layer.cross_attn_ln_0_b, cur)); | |
| } | |
| // cross-attention | |
| { | |
| struct ggml_tensor * Qcur = ggml_mul_mat(ctxL, | |
| layer.cross_attn_q_w, | |
| cur); | |
| Qcur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, | |
| layer.cross_attn_q_b, | |
| Qcur), | |
| Qcur); | |
| Qcur = ggml_scale(ctxL, Qcur, ggml_new_f32(ctxL, pow(float(n_state)/n_head, -0.25))); | |
| // Kcross is already scaled | |
| struct ggml_tensor * Kcross = | |
| ggml_reshape_3d(ctxL, | |
| ggml_view_1d(ctxL, model.memory_cross_k, M*n_state, il*M*ggml_element_size(model.memory_cross_k)*n_state), | |
| n_state/n_head, n_head, M); | |
| struct ggml_tensor * Vcross = | |
| ggml_reshape_3d(ctxL, | |
| ggml_view_1d(ctxL, model.memory_cross_v, M*n_state, il*M*ggml_element_size(model.memory_cross_v)*n_state), | |
| n_state/n_head, n_head, M); | |
| // ------ | |
| struct ggml_tensor * Q = | |
| ggml_permute(ctxL, | |
| ggml_cpy(ctxL, | |
| Qcur, | |
| ggml_new_tensor_3d(ctxL, GGML_TYPE_F32, n_state/n_head, n_head, N)), | |
| 0, 2, 1, 3); | |
| struct ggml_tensor * K = ggml_permute(ctxL, Kcross, 0, 2, 1, 3); | |
| // K * Q | |
| struct ggml_tensor * KQ = ggml_mul_mat(ctxL, K, Q); | |
| //struct ggml_tensor * KQ_scaled = | |
| // ggml_scale(ctxL, | |
| // KQ, | |
| // ggml_new_f32(ctxL, 1.0f/sqrt(float(n_state)/n_head)) | |
| // ); | |
| // no masking for cross-attention | |
| //struct ggml_tensor * KQ_masked = ggml_diag_mask_inf(ctxL, KQ_scaled, n_past); | |
| struct ggml_tensor * KQ_soft_max = ggml_soft_max(ctxL, KQ); | |
| struct ggml_tensor * V_trans = ggml_permute(ctxL, Vcross, 1, 2, 0, 3); | |
| struct ggml_tensor * KQV = ggml_mul_mat(ctxL, V_trans, KQ_soft_max); | |
| struct ggml_tensor * KQV_merged = ggml_permute(ctxL, KQV, 0, 2, 1, 3); | |
| // cur = KQV_merged.contiguous().view(n_state, N) | |
| cur = ggml_cpy(ctxL, | |
| KQV_merged, | |
| ggml_new_tensor_2d(ctxL, GGML_TYPE_F32, n_state, N)); | |
| } | |
| // projection | |
| { | |
| cur = ggml_mul_mat(ctxL, | |
| layer.cross_attn_ln_1_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.cross_attn_ln_1_b, cur), | |
| cur); | |
| } | |
| // add the input | |
| cur = ggml_add(ctxL, cur, inpCA); | |
| struct ggml_tensor * inpFF = cur; | |
| // feed-forward network | |
| { | |
| // norm | |
| { | |
| cur = ggml_norm(ctxL, inpFF); | |
| // cur = mlp_ln_w*cur + mlp_ln_b | |
| cur = ggml_add(ctxL, | |
| ggml_mul(ctxL, | |
| ggml_repeat(ctxL, layer.mlp_ln_w, cur), | |
| cur), | |
| ggml_repeat(ctxL, layer.mlp_ln_b, cur)); | |
| } | |
| // fully connected | |
| cur = ggml_mul_mat(ctxL, | |
| layer.mlp_0_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.mlp_0_b, cur), | |
| cur); | |
| // GELU activation | |
| cur = ggml_gelu(ctxL, cur); | |
| // projection | |
| cur = ggml_mul_mat(ctxL, | |
| layer.mlp_1_w, | |
| cur); | |
| cur = ggml_add(ctxL, | |
| ggml_repeat(ctxL, layer.mlp_1_b, cur), | |
| cur); | |
| } | |
| // output from this layer | |
| struct ggml_tensor * inpO = ggml_add(ctxL, cur, inpFF); | |
| { | |
| ggml_build_forward_expand(&gf, inpO); | |
| ggml_graph_compute (ctxL, &gf); | |
| //ggml_graph_print(&gf); | |
| } | |
| // TODO: this is a hack to have per-layer computation graphs - need to come up with something better | |
| // input for next layer (inpO -> inpL) | |
| memcpy(inpL->data, inpO->data, ggml_nbytes(inpL)); | |
| inpL->op = GGML_OP_NONE; | |
| inpL->src0 = NULL; | |
| inpL->src1 = NULL; | |
| if (N > 1) { | |
| //printf("%s: - used_mem(%d) = %f MB\n", __func__, il, ggml_used_mem(ctxL)/1024.0/1024.0); | |
| } | |
| ggml_free(ctxL); | |
| } | |
| cur = inpL; | |
| // norm | |
| { | |
| cur = ggml_norm(ctx0, cur); | |
| cur = ggml_add(ctx0, | |
| ggml_mul(ctx0, | |
| ggml_repeat(ctx0, model.d_ln_w, cur), | |
| cur), | |
| ggml_repeat(ctx0, model.d_ln_b, cur)); | |
| } | |
| struct ggml_tensor * logits = ggml_mul_mat(ctx0, model.d_te, cur); | |
| // logits -> probs | |
| cur = ggml_dup(ctx0, logits); | |
| cur = ggml_soft_max(ctx0, cur); // in-place | |
| // run the computation | |
| { | |
| struct ggml_cgraph gf = {}; | |
| gf.n_threads = n_threads; | |
| ggml_build_forward_expand(&gf, cur); | |
| ggml_graph_compute (ctx0, &gf); | |
| } | |
| logits_out.resize(N*n_vocab); | |
| memcpy(logits_out.data(), ggml_get_data(logits), sizeof(float)*N*n_vocab); | |
| probs_out.resize(N*n_vocab); | |
| memcpy(probs_out.data(), ggml_get_data(cur), sizeof(float)*N*n_vocab); | |
| if (N > 1) { | |
| //const float mem_per_token = ggml_used_mem(ctx0)/1024.0/1024.0/N; | |
| //printf("%s: used_mem = %f MB / %f per token\n", __func__, ggml_used_mem(ctx0)/1024.0/1024.0, mem_per_token); | |
| //printf("%s: max mem = %f MB\n", __func__, mem_per_token*model.hparams.n_text_ctx); | |
| } | |
| ggml_free(ctx0); | |
| return true; | |
| } | |
| // the most basic sampling scheme - select the top token | |
| whisper_token_data whisper_sample_best( | |
| const whisper_vocab & vocab, | |
| const float * probs) { | |
| whisper_token_data result; | |
| int n_logits = vocab.id_to_token.size(); | |
| std::vector<std::pair<double, whisper_vocab::id>> probs_id; | |
| probs_id.reserve(n_logits); | |
| for (int i = 0; i < n_logits; i++) { | |
| probs_id.push_back(std::make_pair(probs[i], i)); | |
| } | |
| { | |
| double sum_ts = 0.0; | |
| double max_ts = -1.0; | |
| double max_tx = -1.0; | |
| for (int i = 0; i < vocab.token_beg; i++) { | |
| max_tx = std::max(max_tx, probs_id[i].first); | |
| } | |
| for (int i = vocab.token_beg; i < n_logits; i++) { | |
| sum_ts += probs_id[i].first; | |
| if (probs_id[i].first > max_ts) { | |
| max_ts = probs_id[i].first; | |
| result.tid = probs_id[i].second; | |
| } | |
| } | |
| // if the probability sum of all timestamp tokens is higher than the max probability of the text tokens - sample a | |
| // timestamp token | |
| if (sum_ts > max_tx) { | |
| // ref: https://github.com/openai/whisper/blob/0b1ba3d46ebf7fe6f953acfd8cad62a4f851b49f/whisper/decoding.py#L430-L438 | |
| for (int i = 0; i < vocab.token_beg; i++) { | |
| probs_id[i].first = -INFINITY; | |
| } | |
| } | |
| result.pt = max_ts/(sum_ts + 1e-6); | |
| } | |
| // find the top K tokens | |
| const int top_k = 4; | |
| std::partial_sort( | |
| probs_id.begin(), | |
| probs_id.begin() + top_k, probs_id.end(), | |
| [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) { | |
| return a.first > b.first; | |
| }); | |
| probs_id.resize(top_k); | |
| //printf("\n"); | |
| //for (int i = 0; i < (int) probs_id.size(); i++) { | |
| // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); | |
| //} | |
| int res = 0; | |
| while ((probs_id[res].second == vocab.token_sot || | |
| probs_id[res].second == vocab.token_solm || | |
| probs_id[res].second == vocab.token_not) && | |
| res < (int) probs_id.size() - 1) { | |
| res++; | |
| } | |
| result.id = probs_id[res].second; | |
| result.p = probs_id[res].first; | |
| return result; | |
| } | |
| // samples only from the timestamps tokens | |
| whisper_vocab::id whisper_sample_timestamp( | |
| const whisper_vocab & vocab, | |
| const float * probs) { | |
| int n_logits = vocab.id_to_token.size(); | |
| std::vector<std::pair<double, whisper_vocab::id>> probs_id; | |
| probs_id.reserve(n_logits); | |
| for (int i = vocab.token_beg + 1; i < n_logits; i++) { | |
| probs_id.push_back(std::make_pair(probs[i], i)); | |
| } | |
| const int top_k = 10; | |
| // find the top K tokens | |
| std::partial_sort( | |
| probs_id.begin(), | |
| probs_id.begin() + top_k, probs_id.end(), | |
| [](const std::pair<double, whisper_vocab::id> & a, const std::pair<double, whisper_vocab::id> & b) { | |
| return a.first > b.first; | |
| }); | |
| probs_id.resize(top_k); | |
| //printf("\n"); | |
| //for (int i = 0; i < (int) probs_id.size(); i++) { | |
| // printf("%d: '%s' %f, %d\n", i, vocab.id_to_token.at(probs_id[i].second).c_str(), probs_id[i].first, probs_id[i].second); | |
| //} | |
| return probs_id[0].second; | |
| } | |
| // 500 -> 00:05.000 | |
| // 6000 -> 01:00.000 | |
| static std::string to_timestamp(int64_t t, bool comma = false) { | |
| int64_t msec = t * 10; | |
| int64_t hr = msec / (1000 * 60 * 60); | |
| msec = msec - hr * (1000 * 60 * 60); | |
| int64_t min = msec / (1000 * 60); | |
| msec = msec - min * (1000 * 60); | |
| int64_t sec = msec / 1000; | |
| msec = msec - sec * 1000; | |
| char buf[32]; | |
| snprintf(buf, sizeof(buf), "%02d:%02d:%02d%s%03d", (int) hr, (int) min, (int) sec, comma ? "," : ".", (int) msec); | |
| return std::string(buf); | |
| } | |
| // naive Discrete Fourier Transform | |
| // input is real-valued | |
| // output is complex-valued | |
| void dft(const std::vector<float> & in, std::vector<float> & out) { | |
| int N = in.size(); | |
| out.resize(N*2); | |
| for (int k = 0; k < N; k++) { | |
| float re = 0; | |
| float im = 0; | |
| for (int n = 0; n < N; n++) { | |
| float angle = 2*M_PI*k*n/N; | |
| re += in[n]*cos(angle); | |
| im -= in[n]*sin(angle); | |
| } | |
| out[k*2 + 0] = re; | |
| out[k*2 + 1] = im; | |
| } | |
| } | |
| // Cooley-Tukey FFT | |
| // poor man's implementation - use something better | |
| // input is real-valued | |
| // output is complex-valued | |
| void fft(const std::vector<float> & in, std::vector<float> & out) { | |
| out.resize(in.size()*2); | |
| int N = in.size(); | |
| if (N == 1) { | |
| out[0] = in[0]; | |
| out[1] = 0; | |
| return; | |
| } | |
| if (N%2 == 1) { | |
| dft(in, out); | |
| return; | |
| } | |
| std::vector<float> even; | |
| std::vector<float> odd; | |
| for (int i = 0; i < N; i++) { | |
| if (i % 2 == 0) { | |
| even.push_back(in[i]); | |
| } else { | |
| odd.push_back(in[i]); | |
| } | |
| } | |
| std::vector<float> even_fft; | |
| std::vector<float> odd_fft; | |
| fft(even, even_fft); | |
| fft(odd, odd_fft); | |
| for (int k = 0; k < N/2; k++) { | |
| float theta = 2*M_PI*k/N; | |
| float re = cos(theta); | |
| float im = -sin(theta); | |
| float re_odd = odd_fft[2*k + 0]; | |
| float im_odd = odd_fft[2*k + 1]; | |
| out[2*k + 0] = even_fft[2*k + 0] + re*re_odd - im*im_odd; | |
| out[2*k + 1] = even_fft[2*k + 1] + re*im_odd + im*re_odd; | |
| out[2*(k + N/2) + 0] = even_fft[2*k + 0] - re*re_odd + im*im_odd; | |
| out[2*(k + N/2) + 1] = even_fft[2*k + 1] - re*im_odd - im*re_odd; | |
| } | |
| } | |
| // ref: https://github.com/openai/whisper/blob/main/whisper/audio.py#L92-L124 | |
| bool log_mel_spectrogram( | |
| const float * samples, | |
| const int n_samples, | |
| const int sample_rate, | |
| const int fft_size, | |
| const int fft_step, | |
| const int n_mel, | |
| const int n_threads, | |
| const whisper_filters & filters, | |
| whisper_mel & mel) { | |
| // Hanning window | |
| std::vector<float> hann; | |
| hann.resize(fft_size); | |
| for (int i = 0; i < fft_size; i++) { | |
| hann[i] = 0.5*(1.0 - cos((2.0*M_PI*i)/(fft_size))); | |
| } | |
| mel.n_mel = n_mel; | |
| mel.n_len = (n_samples)/fft_step; | |
| mel.data.resize(mel.n_mel*mel.n_len); | |
| const int n_fft = 1 + fft_size/2; | |
| //printf("%s: n_samples = %d, n_len = %d\n", __func__, n_samples, mel.n_len); | |
| //printf("%s: recording length: %f s\n", __func__, (float) n_samples/sample_rate); | |
| std::vector<std::thread> workers(n_threads); | |
| for (int iw = 0; iw < n_threads; ++iw) { | |
| workers[iw] = std::thread([&](int ith) { | |
| std::vector<float> fft_in; | |
| fft_in.resize(fft_size); | |
| for (int i = 0; i < fft_size; i++) { | |
| fft_in[i] = 0.0; | |
| } | |
| std::vector<float> fft_out; | |
| fft_out.resize(2*fft_size); | |
| for (int i = ith; i < mel.n_len; i += n_threads) { | |
| const int offset = i*fft_step; | |
| // apply Hanning window | |
| for (int j = 0; j < fft_size; j++) { | |
| if (offset + j < n_samples) { | |
| fft_in[j] = hann[j]*samples[offset + j]; | |
| } else { | |
| fft_in[j] = 0.0; | |
| } | |
| } | |
| // FFT -> mag^2 | |
| fft(fft_in, fft_out); | |
| for (int j = 0; j < fft_size; j++) { | |
| fft_out[j] = (fft_out[2*j + 0]*fft_out[2*j + 0] + fft_out[2*j + 1]*fft_out[2*j + 1]); | |
| } | |
| for (int j = 1; j < fft_size/2; j++) { | |
| //if (i == 0) { | |
| // printf("%d: %f %f\n", j, fft_out[j], fft_out[fft_size - j]); | |
| //} | |
| fft_out[j] += fft_out[fft_size - j]; | |
| } | |
| if (i == 0) { | |
| //for (int j = 0; j < fft_size; j++) { | |
| // printf("%d: %e\n", j, fft_out[j]); | |
| //} | |
| } | |
| // mel spectrogram | |
| for (int j = 0; j < mel.n_mel; j++) { | |
| double sum = 0.0; | |
| for (int k = 0; k < n_fft; k++) { | |
| sum += fft_out[k]*filters.data[j*n_fft + k]; | |
| } | |
| if (sum < 1e-10) { | |
| sum = 1e-10; | |
| } | |
| sum = log10(sum); | |
| mel.data[j*mel.n_len + i] = sum; | |
| } | |
| } | |
| }, iw); | |
| } | |
| for (int iw = 0; iw < n_threads; ++iw) { | |
| workers[iw].join(); | |
| } | |
| // clamping and normalization | |
| double mmax = -1e20; | |
| for (int i = 0; i < mel.n_mel*mel.n_len; i++) { | |
| if (mel.data[i] > mmax) { | |
| mmax = mel.data[i]; | |
| } | |
| } | |
| //printf("%s: max = %f\n", __func__, mmax); | |
| mmax -= 8.0; | |
| for (int i = 0; i < mel.n_mel*mel.n_len; i++) { | |
| if (mel.data[i] < mmax) { | |
| mel.data[i] = mmax; | |
| } | |
| mel.data[i] = (mel.data[i] + 4.0)/4.0; | |
| } | |
| return true; | |
| } | |
| // | |
| // interface implementation | |
| // | |
| struct whisper_context * whisper_init(const char * path_model) { | |
| ggml_time_init(); | |
| whisper_context * ctx = new whisper_context; | |
| const int64_t t_start_us = ggml_time_us(); | |
| ctx->t_start_us = t_start_us; | |
| if (!whisper_model_load(path_model, *ctx)) { | |
| fprintf(stderr, "%s: failed to load model from '%s'\n", __func__, path_model); | |
| return NULL; | |
| } | |
| ctx->t_load_us = ggml_time_us() - t_start_us; | |
| return ctx; | |
| } | |
| void whisper_free(struct whisper_context * ctx) { | |
| if (ctx) { | |
| if (ctx->buf_model) { | |
| delete ctx->buf_model; | |
| } | |
| delete ctx; | |
| } | |
| } | |
| int whisper_pcm_to_mel(struct whisper_context * ctx, const float * samples, int n_samples, int n_threads) { | |
| const int64_t t_start_us = ggml_time_us(); | |
| if (!log_mel_spectrogram(samples, n_samples, WHISPER_SAMPLE_RATE, WHISPER_N_FFT, WHISPER_HOP_LENGTH, WHISPER_N_MEL, n_threads, ctx->model.filters, ctx->mel)) { | |
| fprintf(stderr, "%s: failed to compute mel spectrogram\n", __func__); | |
| return -1; | |
| } | |
| ctx->t_mel_us = ggml_time_us() - t_start_us; | |
| return 0; | |
| } | |
| int whisper_set_mel( | |
| struct whisper_context * ctx, | |
| const float * data, | |
| int n_len, | |
| int n_mel) { | |
| if (n_mel != WHISPER_N_MEL) { | |
| fprintf(stderr, "%s: invalid number of mel bands: %d (expected %d)\n", __func__, n_mel, WHISPER_N_MEL); | |
| return -1; | |
| } | |
| ctx->mel.n_len = n_len; | |
| ctx->mel.n_mel = n_mel; | |
| ctx->mel.data.resize(n_len*n_mel); | |
| memcpy(ctx->mel.data.data(), data, n_len*n_mel*sizeof(float)); | |
| return 0; | |
| } | |
| int whisper_encode(struct whisper_context * ctx, int offset, int n_threads) { | |
| const int64_t t_start_us = ggml_time_us(); | |
| if (!whisper_encode(*ctx, n_threads, offset)) { | |
| fprintf(stderr, "%s: failed to eval\n", __func__); | |
| return -1; | |
| } | |
| ctx->t_encode_us += ggml_time_us() - t_start_us; | |
| return 0; | |
| } | |
| int whisper_decode(struct whisper_context * ctx, const whisper_token * tokens, int n_tokens, int n_past, int n_threads) { | |
| const int64_t t_start_us = ggml_time_us(); | |
| if (!whisper_decode(*ctx, n_threads, tokens, n_tokens, n_past)) { | |
| fprintf(stderr, "%s: failed to eval\n", __func__); | |
| return 1; | |
| } | |
| ctx->t_decode_us += ggml_time_us() - t_start_us; | |
| return 0; | |
| } | |
| struct whisper_token_data whisper_sample_best(struct whisper_context * ctx) { | |
| const int64_t t_start_sample_us = ggml_time_us(); | |
| // TODO: simplify | |
| auto res = whisper_sample_best(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab)); | |
| ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
| return res; | |
| } | |
| whisper_token whisper_sample_timestamp(struct whisper_context * ctx) { | |
| const int64_t t_start_sample_us = ggml_time_us(); | |
| // TODO: simplify | |
| auto res = whisper_sample_timestamp(ctx->vocab, ctx->probs.data() + (ctx->probs.size() - ctx->vocab.n_vocab)); | |
| ctx->t_sample_us += ggml_time_us() - t_start_sample_us; | |
| return res; | |
| } | |
| int whisper_lang_id(const char * lang) { | |
| if (!g_lang.count(lang)) { | |
| fprintf(stderr, "%s: unknown language '%s'\n", __func__, lang); | |
| return -1; | |
| } | |
| return g_lang.at(lang).first; | |
| } | |
| int whisper_n_len(struct whisper_context * ctx) { | |
| return ctx->mel.n_len; | |
| } | |
| int whisper_n_vocab(struct whisper_context * ctx) { | |
| return ctx->vocab.n_vocab; | |
| } | |
| int whisper_n_text_ctx(struct whisper_context * ctx) { | |
| return ctx->model.hparams.n_text_ctx; | |
| } | |
| int whisper_is_multilingual(struct whisper_context * ctx) { | |
| return ctx->vocab.is_multilingual() ? 1 : 0; | |
| } | |
| float * whisper_get_probs(struct whisper_context * ctx) { | |
| return ctx->probs.data(); | |
| } | |
| const char * whisper_token_to_str(struct whisper_context * ctx, whisper_token token) { | |
| return ctx->vocab.id_to_token.at(token).c_str(); | |
| } | |
| whisper_token whisper_token_eot(struct whisper_context * ctx) { | |
| return ctx->vocab.token_eot; | |
| } | |
| whisper_token whisper_token_sot(struct whisper_context * ctx) { | |
| return ctx->vocab.token_sot; | |
| } | |
| whisper_token whisper_token_prev(struct whisper_context * ctx) { | |
| return ctx->vocab.token_prev; | |
| } | |
| whisper_token whisper_token_solm(struct whisper_context * ctx) { | |
| return ctx->vocab.token_solm; | |
| } | |
| whisper_token whisper_token_not(struct whisper_context * ctx) { | |
| return ctx->vocab.token_not; | |
| } | |
| whisper_token whisper_token_beg(struct whisper_context * ctx) { | |
| return ctx->vocab.token_beg; | |
| } | |
| whisper_token whisper_token_translate() { | |
| return whisper_vocab::token_translate; | |
| } | |
| whisper_token whisper_token_transcribe() { | |
| return whisper_vocab::token_transcribe; | |
| } | |
| void whisper_print_timings(struct whisper_context * ctx) { | |
| const int64_t t_end_us = ggml_time_us(); | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "%s: load time = %8.2f ms\n", __func__, ctx->t_load_us/1000.0f); | |
| fprintf(stderr, "%s: mel time = %8.2f ms\n", __func__, ctx->t_mel_us/1000.0f); | |
| fprintf(stderr, "%s: sample time = %8.2f ms\n", __func__, ctx->t_sample_us/1000.0f); | |
| fprintf(stderr, "%s: encode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_encode_us/1000.0f, ctx->t_encode_us/1000.0f/ctx->model.hparams.n_audio_layer); | |
| fprintf(stderr, "%s: decode time = %8.2f ms / %.2f ms per layer\n", __func__, ctx->t_decode_us/1000.0f, ctx->t_decode_us/1000.0f/ctx->model.hparams.n_text_layer); | |
| fprintf(stderr, "%s: total time = %8.2f ms\n", __func__, (t_end_us - ctx->t_start_us)/1000.0f); | |
| } | |
| //////////////////////////////////////////////////////////////////////////// | |
| struct whisper_full_params whisper_full_default_params(enum whisper_sampling_strategy strategy) { | |
| struct whisper_full_params result; | |
| switch (strategy) { | |
| case WHISPER_SAMPLING_GREEDY: | |
| { | |
| result = { | |
| /*.strategy =*/ WHISPER_SAMPLING_GREEDY, | |
| /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), | |
| /*.n_max_text_ctx =*/ 16384, | |
| /*.offset_ms =*/ 0, | |
| /*.translate =*/ false, | |
| /*.no_context =*/ false, | |
| /*.print_special_tokens =*/ false, | |
| /*.print_progress =*/ true, | |
| /*.print_realtime =*/ false, | |
| /*.print_timestamps =*/ true, | |
| /*.language =*/ "en", | |
| /*.greedy =*/ { | |
| /*.n_past =*/ 0, | |
| }, | |
| /*.beam_search =*/ { | |
| /*.n_past =*/ -1, | |
| /*.beam_width =*/ -1, | |
| /*.n_best =*/ -1, | |
| }, | |
| /*.new_segment_callback =*/ nullptr, | |
| /*.new_segment_callback_user_data =*/ nullptr, | |
| }; | |
| } break; | |
| case WHISPER_SAMPLING_BEAM_SEARCH: | |
| { | |
| result = { | |
| /*.strategy =*/ WHISPER_SAMPLING_BEAM_SEARCH, | |
| /*.n_threads =*/ std::min(4, (int32_t) std::thread::hardware_concurrency()), | |
| /*.n_max_text_ctx =*/ 16384, | |
| /*.offset_ms =*/ 0, | |
| /*.translate =*/ false, | |
| /*.no_context =*/ false, | |
| /*.print_special_tokens =*/ false, | |
| /*.print_progress =*/ true, | |
| /*.print_realtime =*/ false, | |
| /*.print_timestamps =*/ true, | |
| /*.language =*/ "en", | |
| /*.greedy =*/ { | |
| /*.n_past =*/ -1, | |
| }, | |
| /*.beam_search =*/ { | |
| /*.n_past =*/ 0, | |
| /*.beam_width =*/ 10, | |
| /*.n_best =*/ 5, | |
| }, | |
| /*.new_segment_callback =*/ nullptr, | |
| /*.new_segment_callback_user_data =*/ nullptr, | |
| }; | |
| } break; | |
| } | |
| return result; | |
| } | |
| int whisper_full( | |
| struct whisper_context * ctx, | |
| struct whisper_full_params params, | |
| const float * samples, | |
| int n_samples) { | |
| // clear old results | |
| auto & result_all = ctx->result_all; | |
| result_all.clear(); | |
| // compute log mel spectrogram | |
| if (whisper_pcm_to_mel(ctx, samples, n_samples, params.n_threads) != 0) { | |
| fprintf(stderr, "%s: failed to compute log mel spectrogram\n", __func__); | |
| return -1; | |
| } | |
| const int seek_start = params.offset_ms/10; | |
| // if length of spectrogram is less than 1s (100 samples), then return | |
| // basically don't process anything that is less than 1s | |
| // see issue #39: https://github.com/ggerganov/whisper.cpp/issues/39 | |
| if (whisper_n_len(ctx) < 100 + seek_start) { | |
| return 0; | |
| } | |
| // the accumulated text context so far | |
| auto & prompt_past = ctx->prompt_past; | |
| if (params.no_context) { | |
| prompt_past.clear(); | |
| } | |
| // these tokens determine the task that will be performed | |
| std::vector<whisper_token> prompt_init = { whisper_token_sot(ctx) }; | |
| if (whisper_is_multilingual(ctx)) { | |
| prompt_init.push_back(whisper_token_sot(ctx) + 1 + whisper_lang_id(params.language)); | |
| if (params.translate) { | |
| prompt_init.push_back(whisper_token_translate()); | |
| } else { | |
| prompt_init.push_back(whisper_token_transcribe()); | |
| } | |
| } | |
| int progress_prev = 0; | |
| int progress_step = 5; | |
| std::vector<whisper_token_data> tokens_cur; | |
| tokens_cur.reserve(whisper_n_text_ctx(ctx)); | |
| std::vector<whisper_token> prompt; | |
| prompt.reserve(whisper_n_text_ctx(ctx)); | |
| // main loop | |
| int seek = seek_start; | |
| while (true) { | |
| int progress_cur = (100*seek)/whisper_n_len(ctx); | |
| while (progress_cur >= progress_prev + progress_step) { | |
| progress_prev += progress_step; | |
| if (params.print_progress) { | |
| fprintf(stderr, "%s: progress = %3d%%\n", __func__, progress_prev); | |
| } | |
| } | |
| if (seek + 100 >= whisper_n_len(ctx)) { | |
| break; | |
| } | |
| // encode audio features starting at offset seek | |
| if (whisper_encode(ctx, seek, params.n_threads) != 0) { | |
| fprintf(stderr, "%s: failed to encode\n", __func__); | |
| return 7; | |
| } | |
| int n_past = 0; | |
| prompt.clear(); | |
| // if we have already generated some text, use it as a prompt to condition the next generation | |
| if (prompt_past.size() > 0) { | |
| int n_take = std::min(std::min(params.n_max_text_ctx, whisper_n_text_ctx(ctx)/2), int(prompt_past.size())); | |
| prompt = { whisper_token_prev(ctx) }; | |
| prompt.insert(prompt.begin() + 1, prompt_past.end() - n_take, prompt_past.end()); | |
| prompt_past.clear(); | |
| prompt_past.insert(prompt_past.end(), prompt.begin() + 1, prompt.end()); | |
| } | |
| prompt.insert(prompt.end(), prompt_init.begin(), prompt_init.end()); | |
| bool done = false; | |
| int seek_delta = 100*WHISPER_CHUNK_SIZE; | |
| // print the prompt | |
| //printf("\n\n"); | |
| //for (int i = 0; i < prompt.size(); i++) { | |
| // printf("%s: prompt[%d] = %s\n", __func__, i, ctx->vocab.id_to_token[prompt[i]].c_str()); | |
| //} | |
| //printf("\n\n"); | |
| // the accumulated transcription in the current interation | |
| int result_len = 0; | |
| tokens_cur.clear(); | |
| for (int i = 0; i < whisper_n_text_ctx(ctx)/2 - 4; ++i) { | |
| if (whisper_decode(ctx, prompt.data(), prompt.size(), n_past, params.n_threads) != 0) { | |
| fprintf(stderr, "%s: failed to decode\n", __func__); | |
| return 8; | |
| } | |
| n_past += prompt.size(); | |
| prompt.clear(); | |
| // very basic greedy sampling strategy: | |
| // | |
| // - always take the most probable token | |
| // | |
| // more sophisticated sampling strategies could be implemented here, but we keep it simple | |
| // feel free to experiment! | |
| // | |
| { | |
| auto token = whisper_sample_best(ctx); | |
| if (i == 0) { | |
| token.tid = whisper_token_beg(ctx); | |
| } | |
| // timestamp token - update sliding window | |
| if (token.id > whisper_token_beg(ctx)) { | |
| seek_delta = 2*(token.id - whisper_token_beg(ctx)); | |
| result_len = i + 1; | |
| } | |
| // add it to the context | |
| prompt.push_back(token.id); | |
| tokens_cur.push_back(token); | |
| //printf("%s: %s\n", __func__, ctx->vocab.id_to_token[id].c_str()); | |
| // end of text token | |
| if (token.id == whisper_token_eot(ctx)) { | |
| if (result_len == 0) { | |
| if (seek + seek_delta + 100 >= whisper_n_len(ctx)) { | |
| result_len = i + 1; | |
| } else { | |
| // TODO: figure out how to resolve this | |
| fprintf(stderr, "\n%s: failed to generate timestamp token - this should not happen\n\n", __func__); | |
| } | |
| } | |
| break; | |
| } | |
| // TESTS: if no tensors are loaded, it means we are running tests | |
| if (ctx->model.n_loaded == 0) { | |
| seek_delta = 100*WHISPER_CHUNK_SIZE; | |
| break; | |
| } | |
| } | |
| if (done) { | |
| break; | |
| } | |
| } | |
| tokens_cur.resize(result_len); | |
| for (const auto & r : tokens_cur) { | |
| prompt_past.push_back(r.id); | |
| } | |
| // store the text from this iteration | |
| if (tokens_cur.size() > 0) { | |
| int i0 = 0; | |
| auto t0 = seek + 2*(tokens_cur.front().tid - whisper_token_beg(ctx)); | |
| std::string text = ""; | |
| for (int i = 0; i < (int) tokens_cur.size(); i++) { | |
| //printf("%s: %18s %6.3f %18s %6.3f\n", __func__, | |
| // ctx->vocab.id_to_token[tokens_cur[i].id].c_str(), tokens_cur[i].p, | |
| // ctx->vocab.id_to_token[tokens_cur[i].tid].c_str(), tokens_cur[i].pt); | |
| if (params.print_special_tokens == false && tokens_cur[i].id >= whisper_token_eot(ctx)) { | |
| } else { | |
| text += whisper_token_to_str(ctx, tokens_cur[i].id); | |
| } | |
| if (tokens_cur[i].id > whisper_token_beg(ctx)) { | |
| const auto t1 = seek + 2*(tokens_cur[i].tid - whisper_token_beg(ctx)); | |
| if (!text.empty()) { | |
| if (params.print_realtime) { | |
| if (params.print_timestamps) { | |
| printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str()); | |
| } else { | |
| printf("%s", text.c_str()); | |
| fflush(stdout); | |
| } | |
| } | |
| result_all.push_back({ t0, t1, text, {} }); | |
| for (int j = i0; j <= i; j++) { | |
| result_all.back().tokens.push_back(tokens_cur[j]); | |
| } | |
| if (params.new_segment_callback) { | |
| params.new_segment_callback(ctx, params.new_segment_callback_user_data); | |
| } | |
| } | |
| text = ""; | |
| while (i < (int) tokens_cur.size() && tokens_cur[i].id > whisper_token_beg(ctx)) { | |
| i++; | |
| } | |
| i--; | |
| t0 = t1; | |
| i0 = i + 1; | |
| } | |
| } | |
| if (!text.empty()) { | |
| const auto t1 = seek + seek_delta; | |
| if (params.print_realtime) { | |
| if (params.print_timestamps) { | |
| printf("[%s --> %s] %s\n", to_timestamp(t0).c_str(), to_timestamp(t1).c_str(), text.c_str()); | |
| } else { | |
| printf("%s", text.c_str()); | |
| fflush(stdout); | |
| } | |
| } | |
| result_all.push_back({ t0, t1, text, {} }); | |
| for (int j = i0; j < (int) tokens_cur.size(); j++) { | |
| result_all.back().tokens.push_back(tokens_cur[j]); | |
| } | |
| if (params.new_segment_callback) { | |
| params.new_segment_callback(ctx, params.new_segment_callback_user_data); | |
| } | |
| } | |
| } | |
| seek += seek_delta; | |
| } | |
| return 0; | |
| } | |
| int whisper_full_parallel( | |
| struct whisper_context * ctx, | |
| struct whisper_full_params params, | |
| const float * samples, | |
| int n_samples, | |
| const int n_processors) { | |
| if (n_processors == 1) { | |
| return whisper_full(ctx, params, samples, n_samples); | |
| } | |
| int ret = 0; | |
| // prepare separate contexts for each thread | |
| std::vector<struct whisper_context> ctxs(n_processors - 1); | |
| for (int i = 0; i < n_processors - 1; ++i) { | |
| ctxs[i] = *ctx; | |
| auto & model = ctxs[i].model; | |
| // create the ggml memory context | |
| { | |
| struct ggml_init_params params = { | |
| .mem_size = ctxs[i].buf_memory.size(), | |
| .mem_buffer = ctxs[i].buf_memory.data(), | |
| }; | |
| model.ctx_mem = ggml_init(params); | |
| if (!model.ctx_mem) { | |
| fprintf(stderr, "%s: ggml_init() failed\n", __func__); | |
| return false; | |
| } | |
| } | |
| // separate key + value memory for each processor | |
| { | |
| auto & ctx = model.ctx_mem; | |
| const auto & hparams = model.hparams; | |
| const int n_text_state = hparams.n_text_state; | |
| const int n_text_layer = hparams.n_text_layer; | |
| const int n_text_ctx = hparams.n_text_ctx; | |
| // key/value memory for the self-attention layer | |
| { | |
| const int n_mem = n_text_layer*n_text_ctx; | |
| const int n_elements = n_text_state*n_mem; | |
| model.memory_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| model.memory_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| } | |
| // key/value memory for the cross-attention layer | |
| { | |
| const int n_audio_ctx = hparams.n_audio_ctx; | |
| const int n_mem = n_text_layer*n_audio_ctx; | |
| const int n_elements = n_text_state*n_mem; | |
| model.memory_cross_k = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| model.memory_cross_v = ggml_new_tensor_1d(ctx, GGML_TYPE_F16, n_elements); | |
| } | |
| const size_t memory_size = | |
| ggml_nbytes(model.memory_k) + ggml_nbytes(model.memory_v) + | |
| ggml_nbytes(model.memory_cross_k) + ggml_nbytes(model.memory_cross_v); | |
| } | |
| } | |
| const int offset_samples = (WHISPER_SAMPLE_RATE*params.offset_ms)/1000; | |
| const int n_samples_per_processor = (n_samples - offset_samples)/n_processors; | |
| // the calling thread will process the first chunk | |
| // while the other threads will process the remaining chunks | |
| std::vector<std::thread> workers(n_processors - 1); | |
| for (int i = 0; i < n_processors - 1; ++i) { | |
| const int start_samples = offset_samples + (i + 1)*n_samples_per_processor; | |
| const int n_samples_cur = (i == n_processors - 2) ? n_samples - start_samples : n_samples_per_processor; | |
| auto params_cur = params; | |
| params_cur.offset_ms = 0; | |
| params_cur.print_progress = false; | |
| params_cur.print_realtime = false; | |
| params_cur.new_segment_callback = nullptr; | |
| params_cur.new_segment_callback_user_data = nullptr; | |
| workers[i] = std::thread(whisper_full, &ctxs[i], std::move(params_cur), samples + start_samples, n_samples_cur); | |
| } | |
| { | |
| auto params_cur = params; | |
| ret = whisper_full(ctx, std::move(params_cur), samples, offset_samples + n_samples_per_processor); | |
| } | |
| for (int i = 0; i < n_processors - 1; ++i) { | |
| workers[i].join(); | |
| } | |
| const int64_t offset_t = (int64_t) params.offset_ms/10.0; | |
| // combine results into ctx->result_all | |
| for (int i = 0; i < n_processors - 1; ++i) { | |
| auto & results_i = ctxs[i].result_all; | |
| for (int j = 0; j < (int) results_i.size(); ++j) { | |
| // correct the segment timestamp taking into account the offset | |
| results_i[j].t0 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t; | |
| results_i[j].t1 += 100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t; | |
| // make sure that segments are not overlapping | |
| if (ctx->result_all.size() > 0) { | |
| results_i[j].t0 = std::max(results_i[j].t0, ctx->result_all.back().t1); | |
| } | |
| ctx->result_all.push_back(std::move(results_i[j])); | |
| // call the new_segment_callback for each segment | |
| if (params.new_segment_callback) { | |
| params.new_segment_callback(ctx, params.new_segment_callback_user_data); | |
| } | |
| } | |
| ctx->t_mel_us += ctxs[i].t_mel_us; | |
| ctx->t_sample_us += ctxs[i].t_sample_us; | |
| ctx->t_encode_us += ctxs[i].t_encode_us; | |
| ctx->t_decode_us += ctxs[i].t_decode_us; | |
| } | |
| // average the timings | |
| ctx->t_mel_us /= n_processors; | |
| ctx->t_sample_us /= n_processors; | |
| ctx->t_encode_us /= n_processors; | |
| ctx->t_decode_us /= n_processors; | |
| // print information about the audio boundaries | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "%s: the audio has been split into %d chunks at the following times:\n", __func__, n_processors); | |
| for (int i = 0; i < n_processors - 1; ++i) { | |
| fprintf(stderr, "%s: split %d - %s\n", __func__, (i + 1), to_timestamp(100*((i + 1)*n_samples_per_processor)/WHISPER_SAMPLE_RATE + offset_t).c_str()); | |
| } | |
| fprintf(stderr, "%s: the transcription quality may be degraded near these boundaries\n", __func__); | |
| return ret; | |
| } | |
| int whisper_full_n_segments(struct whisper_context * ctx) { | |
| return ctx->result_all.size(); | |
| } | |
| int64_t whisper_full_get_segment_t0(struct whisper_context * ctx, int i_segment) { | |
| return ctx->result_all[i_segment].t0; | |
| } | |
| int64_t whisper_full_get_segment_t1(struct whisper_context * ctx, int i_segment) { | |
| return ctx->result_all[i_segment].t1; | |
| } | |
| const char * whisper_full_get_segment_text(struct whisper_context * ctx, int i_segment) { | |
| return ctx->result_all[i_segment].text.c_str(); | |
| } | |
| int whisper_full_n_tokens(struct whisper_context * ctx, int i_segment) { | |
| return ctx->result_all[i_segment].tokens.size(); | |
| } | |
| const char * whisper_full_get_token_text(struct whisper_context * ctx, int i_segment, int i_token) { | |
| return ctx->vocab.id_to_token[ctx->result_all[i_segment].tokens[i_token].id].c_str(); | |
| } | |
| whisper_token whisper_full_get_token_id(struct whisper_context * ctx, int i_segment, int i_token) { | |
| return ctx->result_all[i_segment].tokens[i_token].id; | |
| } | |
| float whisper_full_get_token_p(struct whisper_context * ctx, int i_segment, int i_token) { | |
| return ctx->result_all[i_segment].tokens[i_token].p; | |
| } | |
| const char * whisper_print_system_info() { | |
| static std::string s; | |
| s = ""; | |
| s += "AVX2 = " + std::to_string(ggml_cpu_has_avx2()) + " | "; | |
| s += "AVX512 = " + std::to_string(ggml_cpu_has_avx512()) + " | "; | |
| s += "NEON = " + std::to_string(ggml_cpu_has_neon()) + " | "; | |
| s += "FP16_VA = " + std::to_string(ggml_cpu_has_fp16_va()) + " | "; | |
| s += "WASM_SIMD = " + std::to_string(ggml_cpu_has_wasm_simd()) + " | "; | |
| s += "BLAS = " + std::to_string(ggml_cpu_has_blas()) + " | "; | |
| return s.c_str(); | |
| } | |