Spaces:
Running
Running
| // Talk with AI | |
| // | |
| std::vector<llama_token> llama_tokenize(struct llama_context * ctx, const std::string & text, bool add_bos) { | |
| // initialize to prompt numer of chars, since n_tokens <= n_prompt_chars | |
| std::vector<llama_token> res(text.size() + (int)add_bos); | |
| int n = llama_tokenize(ctx, text.c_str(), res.data(), res.size(), add_bos); | |
| assert(n >= 0); | |
| res.resize(n); | |
| return res; | |
| } | |
| // command-line parameters | |
| struct whisper_params { | |
| int32_t n_threads = std::min(4, (int32_t) std::thread::hardware_concurrency()); | |
| int32_t voice_ms = 10000; | |
| int32_t capture_id = -1; | |
| int32_t max_tokens = 32; | |
| int32_t audio_ctx = 0; | |
| float vad_thold = 0.6f; | |
| float freq_thold = 100.0f; | |
| bool speed_up = false; | |
| bool translate = false; | |
| bool print_special = false; | |
| bool print_energy = false; | |
| bool no_timestamps = true; | |
| std::string person = "Georgi"; | |
| std::string language = "en"; | |
| std::string model_wsp = "models/ggml-base.en.bin"; | |
| std::string model_llama = "models/ggml-llama-7B.bin"; | |
| std::string speak = "./examples/talk/speak.sh"; | |
| std::string fname_out; | |
| }; | |
| void whisper_print_usage(int argc, char ** argv, const whisper_params & params); | |
| bool whisper_params_parse(int argc, char ** argv, whisper_params & params) { | |
| for (int i = 1; i < argc; i++) { | |
| std::string arg = argv[i]; | |
| if (arg == "-h" || arg == "--help") { | |
| whisper_print_usage(argc, argv, params); | |
| exit(0); | |
| } | |
| else if (arg == "-t" || arg == "--threads") { params.n_threads = std::stoi(argv[++i]); } | |
| else if (arg == "-vms" || arg == "--voice-ms") { params.voice_ms = std::stoi(argv[++i]); } | |
| else if (arg == "-c" || arg == "--capture") { params.capture_id = std::stoi(argv[++i]); } | |
| else if (arg == "-mt" || arg == "--max-tokens") { params.max_tokens = std::stoi(argv[++i]); } | |
| else if (arg == "-ac" || arg == "--audio-ctx") { params.audio_ctx = std::stoi(argv[++i]); } | |
| else if (arg == "-vth" || arg == "--vad-thold") { params.vad_thold = std::stof(argv[++i]); } | |
| else if (arg == "-fth" || arg == "--freq-thold") { params.freq_thold = std::stof(argv[++i]); } | |
| else if (arg == "-su" || arg == "--speed-up") { params.speed_up = true; } | |
| else if (arg == "-tr" || arg == "--translate") { params.translate = true; } | |
| else if (arg == "-ps" || arg == "--print-special") { params.print_special = true; } | |
| else if (arg == "-pe" || arg == "--print-energy") { params.print_energy = true; } | |
| else if (arg == "-p" || arg == "--person") { params.person = argv[++i]; } | |
| else if (arg == "-l" || arg == "--language") { params.language = argv[++i]; } | |
| else if (arg == "-mw" || arg == "--model-whisper") { params.model_wsp = argv[++i]; } | |
| else if (arg == "-ml" || arg == "--model-llama") { params.model_llama = argv[++i]; } | |
| else if (arg == "-s" || arg == "--speak") { params.speak = argv[++i]; } | |
| else if (arg == "-f" || arg == "--file") { params.fname_out = argv[++i]; } | |
| else { | |
| fprintf(stderr, "error: unknown argument: %s\n", arg.c_str()); | |
| whisper_print_usage(argc, argv, params); | |
| exit(0); | |
| } | |
| } | |
| return true; | |
| } | |
| void whisper_print_usage(int /*argc*/, char ** argv, const whisper_params & params) { | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "usage: %s [options]\n", argv[0]); | |
| fprintf(stderr, "\n"); | |
| fprintf(stderr, "options:\n"); | |
| fprintf(stderr, " -h, --help [default] show this help message and exit\n"); | |
| fprintf(stderr, " -t N, --threads N [%-7d] number of threads to use during computation\n", params.n_threads); | |
| fprintf(stderr, " -vms N, --voice-ms N [%-7d] voice duration in milliseconds\n", params.voice_ms); | |
| fprintf(stderr, " -c ID, --capture ID [%-7d] capture device ID\n", params.capture_id); | |
| fprintf(stderr, " -mt N, --max-tokens N [%-7d] maximum number of tokens per audio chunk\n", params.max_tokens); | |
| fprintf(stderr, " -ac N, --audio-ctx N [%-7d] audio context size (0 - all)\n", params.audio_ctx); | |
| fprintf(stderr, " -vth N, --vad-thold N [%-7.2f] voice activity detection threshold\n", params.vad_thold); | |
| fprintf(stderr, " -fth N, --freq-thold N [%-7.2f] high-pass frequency cutoff\n", params.freq_thold); | |
| fprintf(stderr, " -su, --speed-up [%-7s] speed up audio by x2 (reduced accuracy)\n", params.speed_up ? "true" : "false"); | |
| fprintf(stderr, " -tr, --translate [%-7s] translate from source language to english\n", params.translate ? "true" : "false"); | |
| fprintf(stderr, " -ps, --print-special [%-7s] print special tokens\n", params.print_special ? "true" : "false"); | |
| fprintf(stderr, " -pe, --print-energy [%-7s] print sound energy (for debugging)\n", params.print_energy ? "true" : "false"); | |
| fprintf(stderr, " -p NAME, --person NAME [%-7s] person name (for prompt selection)\n", params.person.c_str()); | |
| fprintf(stderr, " -l LANG, --language LANG [%-7s] spoken language\n", params.language.c_str()); | |
| fprintf(stderr, " -mw FILE, --model-whisper [%-7s] whisper model file\n", params.model_wsp.c_str()); | |
| fprintf(stderr, " -mg FILE, --model-llama [%-7s] llama model file\n", params.model_llama.c_str()); | |
| fprintf(stderr, " -s FILE, --speak TEXT [%-7s] command for TTS\n", params.speak.c_str()); | |
| fprintf(stderr, " -f FNAME, --file FNAME [%-7s] text output file name\n", params.fname_out.c_str()); | |
| fprintf(stderr, "\n"); | |
| } | |
| std::string transcribe( | |
| whisper_context * ctx, | |
| const whisper_params & params, | |
| const std::vector<float> & pcmf32, | |
| const std::string prompt_text, | |
| float & prob, | |
| int64_t & t_ms) { | |
| const auto t_start = std::chrono::high_resolution_clock::now(); | |
| prob = 0.0f; | |
| t_ms = 0; | |
| std::vector<whisper_token> prompt_tokens; | |
| whisper_full_params wparams = whisper_full_default_params(WHISPER_SAMPLING_GREEDY); | |
| prompt_tokens.resize(1024); | |
| prompt_tokens.resize(whisper_tokenize(ctx, prompt_text.c_str(), prompt_tokens.data(), prompt_tokens.size())); | |
| wparams.print_progress = false; | |
| wparams.print_special = params.print_special; | |
| wparams.print_realtime = false; | |
| wparams.print_timestamps = !params.no_timestamps; | |
| wparams.translate = params.translate; | |
| wparams.no_context = true; | |
| wparams.single_segment = true; | |
| wparams.max_tokens = params.max_tokens; | |
| wparams.language = params.language.c_str(); | |
| wparams.n_threads = params.n_threads; | |
| wparams.prompt_tokens = prompt_tokens.empty() ? nullptr : prompt_tokens.data(); | |
| wparams.prompt_n_tokens = prompt_tokens.empty() ? 0 : prompt_tokens.size(); | |
| wparams.audio_ctx = params.audio_ctx; | |
| wparams.speed_up = params.speed_up; | |
| if (whisper_full(ctx, wparams, pcmf32.data(), pcmf32.size()) != 0) { | |
| return ""; | |
| } | |
| int prob_n = 0; | |
| std::string result; | |
| const int n_segments = whisper_full_n_segments(ctx); | |
| for (int i = 0; i < n_segments; ++i) { | |
| const char * text = whisper_full_get_segment_text(ctx, i); | |
| result += text; | |
| const int n_tokens = whisper_full_n_tokens(ctx, i); | |
| for (int j = 0; j < n_tokens; ++j) { | |
| const auto token = whisper_full_get_token_data(ctx, i, j); | |
| prob += token.p; | |
| ++prob_n; | |
| } | |
| } | |
| if (prob_n > 0) { | |
| prob /= prob_n; | |
| } | |
| const auto t_end = std::chrono::high_resolution_clock::now(); | |
| t_ms = std::chrono::duration_cast<std::chrono::milliseconds>(t_end - t_start).count(); | |
| return result; | |
| } | |
| const std::string k_prompt_whisper = R"(A conversation with a person called {1}.)"; | |
| // need to have leading ' ' | |
| const std::string k_prompt_llama = R"( Text transcript of a never ending dialog, where {0} interacts with an AI assistant named {1}. | |
| {1} is helpful, kind, honest, friendly, good at writing and never fails to answer {0}’s requests immediately and with details and precision. | |
| There are no annotations like (30 seconds passed...) or (to himself), just what {0} and {1} say aloud to each other. | |
| The transcript only includes text, it does not include markup like HTML and Markdown. | |
| {1} responds with short and concise answers. | |
| {0}{4} Hello, {1}! | |
| {1}{4} Hello {0}! How may I help you today? | |
| {0}{4} What time is it? | |
| {1}{4} It is {2} o'clock. | |
| {0}{4} What year is it? | |
| {1}{4} We are in {3}. | |
| {0}{4} What is a cat? | |
| {1}{4} A cat is a domestic species of small carnivorous mammal. It is the only domesticated species in the family Felidae. | |
| {0}{4} Name a color. | |
| {1}{4} Blue | |
| {0}{4})"; | |
| int main(int argc, char ** argv) { | |
| whisper_params params; | |
| if (whisper_params_parse(argc, argv, params) == false) { | |
| return 1; | |
| } | |
| if (whisper_lang_id(params.language.c_str()) == -1) { | |
| fprintf(stderr, "error: unknown language '%s'\n", params.language.c_str()); | |
| whisper_print_usage(argc, argv, params); | |
| exit(0); | |
| } | |
| // whisper init | |
| struct whisper_context * ctx_wsp = whisper_init_from_file(params.model_wsp.c_str()); | |
| // llama init | |
| auto lparams = llama_context_default_params(); | |
| // tune these to your liking | |
| lparams.n_ctx = 512; | |
| lparams.seed = 1; | |
| lparams.f16_kv = true; | |
| struct llama_context * ctx_llama = llama_init_from_file(params.model_llama.c_str(), lparams); | |
| // print some info about the processing | |
| { | |
| fprintf(stderr, "\n"); | |
| if (!whisper_is_multilingual(ctx_wsp)) { | |
| if (params.language != "en" || params.translate) { | |
| params.language = "en"; | |
| params.translate = false; | |
| fprintf(stderr, "%s: WARNING: model is not multilingual, ignoring language and translation options\n", __func__); | |
| } | |
| } | |
| fprintf(stderr, "%s: processing, %d threads, lang = %s, task = %s, timestamps = %d ...\n", | |
| __func__, | |
| params.n_threads, | |
| params.language.c_str(), | |
| params.translate ? "translate" : "transcribe", | |
| params.no_timestamps ? 0 : 1); | |
| fprintf(stderr, "\n"); | |
| } | |
| // init audio | |
| audio_async audio(30*1000); | |
| if (!audio.init(params.capture_id, WHISPER_SAMPLE_RATE)) { | |
| fprintf(stderr, "%s: audio.init() failed!\n", __func__); | |
| return 1; | |
| } | |
| audio.resume(); | |
| int n_iter = 0; | |
| bool is_running = true; | |
| bool force_speak = false; | |
| float prob0 = 0.0f; | |
| const std::string chat_symb = ":"; | |
| const std::string bot_name = "LLaMA"; | |
| std::vector<float> pcmf32_cur; | |
| std::vector<float> pcmf32_prompt; | |
| const std::string prompt_whisper = ::replace(k_prompt_whisper, "{1}", bot_name); | |
| // construct the initial prompt for LLaMA inference | |
| std::string prompt_llama = k_prompt_llama; | |
| prompt_llama = ::replace(prompt_llama, "{0}", params.person); | |
| prompt_llama = ::replace(prompt_llama, "{1}", bot_name); | |
| { | |
| // get time string | |
| std::string time_str; | |
| { | |
| time_t t = time(0); | |
| struct tm * now = localtime(&t); | |
| char buf[128]; | |
| strftime(buf, sizeof(buf), "%H:%M", now); | |
| time_str = buf; | |
| } | |
| prompt_llama = ::replace(prompt_llama, "{2}", time_str); | |
| } | |
| { | |
| // get year string | |
| std::string year_str; | |
| { | |
| time_t t = time(0); | |
| struct tm * now = localtime(&t); | |
| char buf[128]; | |
| strftime(buf, sizeof(buf), "%Y", now); | |
| year_str = buf; | |
| } | |
| prompt_llama = ::replace(prompt_llama, "{3}", year_str); | |
| } | |
| prompt_llama = ::replace(prompt_llama, "{4}", chat_symb); | |
| // evaluate the initial prompt | |
| auto embd_inp = ::llama_tokenize(ctx_llama, prompt_llama, true); | |
| printf("\n"); | |
| printf("%s : initializing - please wait ...\n", __func__); | |
| if (llama_eval(ctx_llama, embd_inp.data(), embd_inp.size(), 0, params.n_threads)) { | |
| fprintf(stderr, "%s : failed to eval\n", __func__); | |
| return 1; | |
| } | |
| //fprintf(stdout, "\n"); | |
| //fprintf(stdout, "%s", prompt_llama.c_str()); | |
| //fflush(stdout); | |
| printf("%s : done! start speaking in the microphone\n", __func__); | |
| printf("\n"); | |
| printf("%s%s", params.person.c_str(), chat_symb.c_str()); | |
| fflush(stdout); | |
| // clear audio buffer | |
| audio.clear(); | |
| // text inference variables | |
| const int voice_id = 2; | |
| const int n_keep = embd_inp.size(); | |
| const int n_ctx = llama_n_ctx(ctx_llama); | |
| int n_past = n_keep; | |
| int n_prev = 64; // TODO arg | |
| std::vector<llama_token> embd; | |
| // reverse prompts for detecting when it's time to stop speaking | |
| std::vector<std::string> antiprompts = { | |
| params.person + chat_symb, | |
| }; | |
| // main loop | |
| while (is_running) { | |
| // handle Ctrl + C | |
| is_running = sdl_poll_events(); | |
| if (!is_running) { | |
| break; | |
| } | |
| // delay | |
| std::this_thread::sleep_for(std::chrono::milliseconds(100)); | |
| int64_t t_ms = 0; | |
| { | |
| audio.get(2000, pcmf32_cur); | |
| if (::vad_simple(pcmf32_cur, WHISPER_SAMPLE_RATE, 1250, params.vad_thold, params.freq_thold, params.print_energy) || force_speak) { | |
| //fprintf(stdout, "%s: Speech detected! Processing ...\n", __func__); | |
| audio.get(params.voice_ms, pcmf32_cur); | |
| std::string text_heard; | |
| if (!force_speak) { | |
| text_heard = ::trim(::transcribe(ctx_wsp, params, pcmf32_cur, prompt_whisper, prob0, t_ms)); | |
| } | |
| // remove text between brackets using regex | |
| { | |
| std::regex re("\\[.*?\\]"); | |
| text_heard = std::regex_replace(text_heard, re, ""); | |
| } | |
| // remove text between brackets using regex | |
| { | |
| std::regex re("\\(.*?\\)"); | |
| text_heard = std::regex_replace(text_heard, re, ""); | |
| } | |
| // remove all characters, except for letters, numbers, punctuation and ':', '\'', '-', ' ' | |
| text_heard = std::regex_replace(text_heard, std::regex("[^a-zA-Z0-9\\.,\\?!\\s\\:\\'\\-]"), ""); | |
| // take first line | |
| text_heard = text_heard.substr(0, text_heard.find_first_of('\n')); | |
| // remove leading and trailing whitespace | |
| text_heard = std::regex_replace(text_heard, std::regex("^\\s+"), ""); | |
| text_heard = std::regex_replace(text_heard, std::regex("\\s+$"), ""); | |
| const std::vector<llama_token> tokens = llama_tokenize(ctx_llama, text_heard.c_str(), false); | |
| if (text_heard.empty() || tokens.empty() || force_speak) { | |
| //fprintf(stdout, "%s: Heard nothing, skipping ...\n", __func__); | |
| audio.clear(); | |
| continue; | |
| } | |
| force_speak = false; | |
| text_heard.insert(0, 1, ' '); | |
| text_heard += "\n" + bot_name + chat_symb; | |
| fprintf(stdout, "%s%s%s", "\033[1m", text_heard.c_str(), "\033[0m"); | |
| fflush(stdout); | |
| embd = ::llama_tokenize(ctx_llama, text_heard, false); | |
| // text inference | |
| bool done = false; | |
| std::string text_to_speak; | |
| while (true) { | |
| // predict | |
| if (embd.size() > 0) { | |
| if (n_past + (int) embd.size() > n_ctx) { | |
| n_past = n_keep; | |
| // insert n_left/2 tokens at the start of embd from last_n_tokens | |
| embd.insert(embd.begin(), embd_inp.begin() + embd_inp.size() - n_prev, embd_inp.end()); | |
| //printf("\n---\n"); | |
| //printf("resetting: '"); | |
| //for (int i = 0; i < (int) embd.size(); i++) { | |
| // printf("%s", llama_token_to_str(ctx_llama, embd[i])); | |
| //} | |
| //printf("'\n"); | |
| //printf("\n---\n"); | |
| } | |
| if (llama_eval(ctx_llama, embd.data(), embd.size(), n_past, params.n_threads)) { | |
| fprintf(stderr, "%s : failed to eval\n", __func__); | |
| return 1; | |
| } | |
| } | |
| //printf("n_iter = %d, n_past = %d, n_ctx = %d, n_keep = %d, n_prev = %d, embd.size() = %d\n", n_iter, n_past, n_ctx, n_keep, n_prev, (int) embd.size()); | |
| embd_inp.insert(embd_inp.end(), embd.begin(), embd.end()); | |
| n_past += embd.size(); | |
| embd.clear(); | |
| if (done) break; | |
| { | |
| // out of user input, sample next token | |
| const float top_k = 5; | |
| const float top_p = 0.80f; | |
| const float temp = 0.30f; | |
| const float repeat_penalty = 1.1764f; | |
| const int repeat_last_n = 256; | |
| llama_token id = 0; | |
| { | |
| auto logits = llama_get_logits(ctx_llama); | |
| logits[llama_token_eos()] = 0; | |
| id = llama_sample_top_p_top_k(ctx_llama, | |
| embd_inp.data() + std::max(0, n_past - repeat_last_n), | |
| repeat_last_n, top_k, top_p, temp, repeat_penalty); | |
| } | |
| if (id != llama_token_eos()) { | |
| // add it to the context | |
| embd.push_back(id); | |
| text_to_speak += llama_token_to_str(ctx_llama, id); | |
| printf("%s", llama_token_to_str(ctx_llama, id)); | |
| } | |
| } | |
| { | |
| std::string last_output; | |
| for (int i = embd_inp.size() - 16; i < (int) embd_inp.size(); i++) { | |
| last_output += llama_token_to_str(ctx_llama, embd_inp[i]); | |
| } | |
| last_output += llama_token_to_str(ctx_llama, embd[0]); | |
| for (std::string & antiprompt : antiprompts) { | |
| if (last_output.find(antiprompt.c_str(), last_output.length() - antiprompt.length(), antiprompt.length()) != std::string::npos) { | |
| done = true; | |
| text_to_speak = ::replace(text_to_speak, antiprompt, ""); | |
| fflush(stdout); | |
| break; | |
| } | |
| } | |
| } | |
| is_running = sdl_poll_events(); | |
| if (!is_running) { | |
| break; | |
| } | |
| } | |
| text_to_speak = ::replace(text_to_speak, "\"", ""); | |
| system((params.speak + " " + std::to_string(voice_id) + " \"" + text_to_speak + "\"").c_str()); | |
| audio.clear(); | |
| ++n_iter; | |
| } | |
| } | |
| } | |
| audio.pause(); | |
| whisper_print_timings(ctx_wsp); | |
| whisper_free(ctx_wsp); | |
| llama_print_timings(ctx_llama); | |
| llama_free(ctx_llama); | |
| return 0; | |
| } | |