|
|
"""
|
|
|
Hugging Face Agent Integration for OpenManus
|
|
|
Extends the main AI agent with access to thousands of HuggingFace models
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
from typing import Any, Dict, List, Optional
|
|
|
|
|
|
from app.agent.base import BaseAgent
|
|
|
from app.huggingface_models import ModelCategory
|
|
|
from app.logger import logger
|
|
|
from app.tool.huggingface_models_tool import HuggingFaceModelsTool
|
|
|
|
|
|
|
|
|
class HuggingFaceAgent(BaseAgent):
|
|
|
"""AI Agent with integrated HuggingFace model access"""
|
|
|
|
|
|
def __init__(self, **config):
|
|
|
super().__init__(**config)
|
|
|
|
|
|
|
|
|
hf_token = os.getenv("HUGGINGFACE_TOKEN") or config.get("huggingface_token")
|
|
|
if not hf_token:
|
|
|
logger.warning(
|
|
|
"No Hugging Face token provided. HF models will not be available."
|
|
|
)
|
|
|
self.hf_tool = None
|
|
|
else:
|
|
|
self.hf_tool = HuggingFaceModelsTool(hf_token)
|
|
|
|
|
|
|
|
|
self.default_models = {
|
|
|
"text_generation": "MiniMax-M2",
|
|
|
"image_generation": "FLUX.1 Dev",
|
|
|
"speech_recognition": "Whisper Large v3",
|
|
|
"text_to_speech": "Kokoro 82M",
|
|
|
"image_classification": "ViT Base Patch16",
|
|
|
"embeddings": "Sentence Transformers All MiniLM",
|
|
|
"translation": "M2M100 1.2B",
|
|
|
"summarization": "PEGASUS XSum",
|
|
|
}
|
|
|
|
|
|
async def generate_text_with_hf(
|
|
|
self,
|
|
|
prompt: str,
|
|
|
model_name: Optional[str] = None,
|
|
|
max_tokens: int = 200,
|
|
|
temperature: float = 0.7,
|
|
|
stream: bool = False,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate text using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["text_generation"]
|
|
|
|
|
|
return await self.hf_tool.text_generation(
|
|
|
model_name=model_name,
|
|
|
prompt=prompt,
|
|
|
max_tokens=max_tokens,
|
|
|
temperature=temperature,
|
|
|
stream=stream,
|
|
|
)
|
|
|
|
|
|
async def generate_image_with_hf(
|
|
|
self,
|
|
|
prompt: str,
|
|
|
model_name: Optional[str] = None,
|
|
|
negative_prompt: Optional[str] = None,
|
|
|
width: int = 1024,
|
|
|
height: int = 1024,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate images using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["image_generation"]
|
|
|
|
|
|
return await self.hf_tool.generate_image(
|
|
|
model_name=model_name,
|
|
|
prompt=prompt,
|
|
|
negative_prompt=negative_prompt,
|
|
|
width=width,
|
|
|
height=height,
|
|
|
)
|
|
|
|
|
|
async def transcribe_audio_with_hf(
|
|
|
self,
|
|
|
audio_data: bytes,
|
|
|
model_name: Optional[str] = None,
|
|
|
language: Optional[str] = None,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Transcribe audio using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["speech_recognition"]
|
|
|
|
|
|
return await self.hf_tool.transcribe_audio(
|
|
|
model_name=model_name, audio_data=audio_data, language=language
|
|
|
)
|
|
|
|
|
|
async def synthesize_speech_with_hf(
|
|
|
self,
|
|
|
text: str,
|
|
|
model_name: Optional[str] = None,
|
|
|
voice_id: Optional[str] = None,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate speech from text using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["text_to_speech"]
|
|
|
|
|
|
return await self.hf_tool.text_to_speech(
|
|
|
model_name=model_name, text=text, voice_id=voice_id
|
|
|
)
|
|
|
|
|
|
async def classify_image_with_hf(
|
|
|
self, image_data: bytes, model_name: Optional[str] = None, task: str = "general"
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Classify images using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
|
|
|
if task == "nsfw":
|
|
|
model_name = "NSFW Image Detection"
|
|
|
elif task == "emotions":
|
|
|
model_name = "Facial Emotions Detection"
|
|
|
elif task == "deepfake":
|
|
|
model_name = "Deepfake Detection"
|
|
|
else:
|
|
|
model_name = model_name or self.default_models["image_classification"]
|
|
|
|
|
|
return await self.hf_tool.classify_image(
|
|
|
model_name=model_name, image_data=image_data
|
|
|
)
|
|
|
|
|
|
async def get_text_embeddings_with_hf(
|
|
|
self, texts: List[str], model_name: Optional[str] = None
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Get text embeddings using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["embeddings"]
|
|
|
|
|
|
return await self.hf_tool.get_embeddings(model_name=model_name, texts=texts)
|
|
|
|
|
|
async def translate_with_hf(
|
|
|
self,
|
|
|
text: str,
|
|
|
target_language: str,
|
|
|
source_language: Optional[str] = None,
|
|
|
model_name: Optional[str] = None,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Translate text using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["translation"]
|
|
|
|
|
|
return await self.hf_tool.translate_text(
|
|
|
model_name=model_name,
|
|
|
text=text,
|
|
|
source_language=source_language,
|
|
|
target_language=target_language,
|
|
|
)
|
|
|
|
|
|
async def summarize_with_hf(
|
|
|
self, text: str, model_name: Optional[str] = None, max_length: int = 150
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Summarize text using HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or self.default_models["summarization"]
|
|
|
|
|
|
return await self.hf_tool.summarize_text(
|
|
|
model_name=model_name, text=text, max_length=max_length
|
|
|
)
|
|
|
|
|
|
def get_available_hf_models(self, category: Optional[str] = None) -> Dict[str, Any]:
|
|
|
"""Get list of available HuggingFace models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
return self.hf_tool.list_available_models(category)
|
|
|
|
|
|
async def smart_model_selection(
|
|
|
self, task_description: str, content_type: str = "text"
|
|
|
) -> str:
|
|
|
"""
|
|
|
Intelligently select the best HuggingFace model for a task
|
|
|
|
|
|
Args:
|
|
|
task_description: Description of what the user wants to do
|
|
|
content_type: Type of content (text, image, audio, video)
|
|
|
"""
|
|
|
task_lower = task_description.lower()
|
|
|
|
|
|
|
|
|
if any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"video",
|
|
|
"movie",
|
|
|
"animation",
|
|
|
"motion",
|
|
|
"gif",
|
|
|
"sequence",
|
|
|
"frames",
|
|
|
]
|
|
|
):
|
|
|
if "generate" in task_lower or "create" in task_lower:
|
|
|
return "Stable Video Diffusion"
|
|
|
elif "analyze" in task_lower or "describe" in task_lower:
|
|
|
return "Video ChatGPT"
|
|
|
else:
|
|
|
return "AnimateDiff"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"code",
|
|
|
"programming",
|
|
|
"app",
|
|
|
"application",
|
|
|
"software",
|
|
|
"develop",
|
|
|
"build",
|
|
|
"function",
|
|
|
"class",
|
|
|
"api",
|
|
|
"database",
|
|
|
"website",
|
|
|
"frontend",
|
|
|
"backend",
|
|
|
]
|
|
|
):
|
|
|
if "app" in task_lower or "application" in task_lower:
|
|
|
return "CodeLlama 34B Instruct"
|
|
|
elif "python" in task_lower:
|
|
|
return "WizardCoder 34B"
|
|
|
elif "api" in task_lower:
|
|
|
return "StarCoder2 15B"
|
|
|
elif "explain" in task_lower or "comment" in task_lower:
|
|
|
return "Phind CodeLlama"
|
|
|
else:
|
|
|
return "DeepSeek Coder V2"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"3d",
|
|
|
"three dimensional",
|
|
|
"mesh",
|
|
|
"model",
|
|
|
"obj",
|
|
|
"stl",
|
|
|
"ar",
|
|
|
"vr",
|
|
|
"augmented reality",
|
|
|
"virtual reality",
|
|
|
"texture",
|
|
|
"material",
|
|
|
]
|
|
|
):
|
|
|
if "text" in task_lower and ("3d" in task_lower or "model" in task_lower):
|
|
|
return "Shap-E"
|
|
|
elif "image" in task_lower and "3d" in task_lower:
|
|
|
return "DreamFusion"
|
|
|
else:
|
|
|
return "Point-E"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"ocr",
|
|
|
"document",
|
|
|
"pdf",
|
|
|
"scan",
|
|
|
"extract text",
|
|
|
"handwriting",
|
|
|
"form",
|
|
|
"table",
|
|
|
"layout",
|
|
|
"invoice",
|
|
|
"receipt",
|
|
|
"contract",
|
|
|
]
|
|
|
):
|
|
|
if "handwriting" in task_lower or "handwritten" in task_lower:
|
|
|
return "TrOCR Handwritten"
|
|
|
elif "table" in task_lower:
|
|
|
return "TableTransformer"
|
|
|
elif "form" in task_lower:
|
|
|
return "FormNet"
|
|
|
else:
|
|
|
return "TrOCR Large"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"visual question",
|
|
|
"image question",
|
|
|
"describe image",
|
|
|
"multimodal",
|
|
|
"vision language",
|
|
|
"image text",
|
|
|
"cross modal",
|
|
|
]
|
|
|
):
|
|
|
if "chat" in task_lower or "conversation" in task_lower:
|
|
|
return "GPT-4V"
|
|
|
elif "question" in task_lower:
|
|
|
return "LLaVA"
|
|
|
else:
|
|
|
return "BLIP-2"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"story",
|
|
|
"creative",
|
|
|
"poem",
|
|
|
"poetry",
|
|
|
"novel",
|
|
|
"screenplay",
|
|
|
"script",
|
|
|
"blog",
|
|
|
"article",
|
|
|
"marketing",
|
|
|
"copy",
|
|
|
"advertising",
|
|
|
]
|
|
|
):
|
|
|
if "story" in task_lower or "novel" in task_lower:
|
|
|
return "Novel AI"
|
|
|
elif "poem" in task_lower or "poetry" in task_lower:
|
|
|
return "Poet Assistant"
|
|
|
elif "marketing" in task_lower or "copy" in task_lower:
|
|
|
return "Marketing Copy AI"
|
|
|
else:
|
|
|
return "GPT-3.5 Creative"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"game",
|
|
|
"character",
|
|
|
"npc",
|
|
|
"level",
|
|
|
"dialogue",
|
|
|
"asset",
|
|
|
"quest",
|
|
|
"gameplay",
|
|
|
"mechanic",
|
|
|
"unity",
|
|
|
"unreal",
|
|
|
]
|
|
|
):
|
|
|
if "character" in task_lower:
|
|
|
return "Character AI"
|
|
|
elif "level" in task_lower or "environment" in task_lower:
|
|
|
return "Level Designer"
|
|
|
elif "dialogue" in task_lower or "conversation" in task_lower:
|
|
|
return "Dialogue Writer"
|
|
|
else:
|
|
|
return "Asset Creator"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"research",
|
|
|
"scientific",
|
|
|
"paper",
|
|
|
"analysis",
|
|
|
"data",
|
|
|
"protein",
|
|
|
"molecule",
|
|
|
"chemistry",
|
|
|
"biology",
|
|
|
"physics",
|
|
|
"experiment",
|
|
|
]
|
|
|
):
|
|
|
if "protein" in task_lower or "folding" in task_lower:
|
|
|
return "AlphaFold"
|
|
|
elif "molecule" in task_lower or "chemistry" in task_lower:
|
|
|
return "ChemBERTa"
|
|
|
elif "data" in task_lower and "analysis" in task_lower:
|
|
|
return "Data Analyst"
|
|
|
else:
|
|
|
return "SciBERT"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"email",
|
|
|
"business",
|
|
|
"report",
|
|
|
"presentation",
|
|
|
"meeting",
|
|
|
"project",
|
|
|
"plan",
|
|
|
"proposal",
|
|
|
"memo",
|
|
|
"letter",
|
|
|
"professional",
|
|
|
]
|
|
|
):
|
|
|
if "email" in task_lower:
|
|
|
return "Email Assistant"
|
|
|
elif "presentation" in task_lower:
|
|
|
return "Presentation AI"
|
|
|
elif "report" in task_lower:
|
|
|
return "Report Writer"
|
|
|
elif "meeting" in task_lower:
|
|
|
return "Meeting Summarizer"
|
|
|
else:
|
|
|
return "Project Planner"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"music",
|
|
|
"audio",
|
|
|
"sound",
|
|
|
"voice clone",
|
|
|
"enhance",
|
|
|
"restore",
|
|
|
"upscale",
|
|
|
"remove background",
|
|
|
"inpaint",
|
|
|
"style transfer",
|
|
|
]
|
|
|
):
|
|
|
if "music" in task_lower:
|
|
|
return "MusicGen"
|
|
|
elif "voice" in task_lower and "clone" in task_lower:
|
|
|
return "Voice Cloner"
|
|
|
elif "upscale" in task_lower or "enhance" in task_lower:
|
|
|
return "Real-ESRGAN"
|
|
|
elif "background" in task_lower and "remove" in task_lower:
|
|
|
return "Background Remover"
|
|
|
elif "restore" in task_lower or "face" in task_lower:
|
|
|
return "GFPGAN"
|
|
|
else:
|
|
|
return "LaMa"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in [
|
|
|
"generate",
|
|
|
"write",
|
|
|
"create",
|
|
|
"compose",
|
|
|
"chat",
|
|
|
"conversation",
|
|
|
]
|
|
|
):
|
|
|
if "chat" in task_lower or "conversation" in task_lower:
|
|
|
return "Llama 3.1 8B Instruct"
|
|
|
else:
|
|
|
return "MiniMax-M2"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in ["image", "picture", "draw", "art", "photo", "visual"]
|
|
|
):
|
|
|
if "fast" in task_lower or "quick" in task_lower:
|
|
|
return "FLUX.1 Schnell"
|
|
|
else:
|
|
|
return "FLUX.1 Dev"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in ["transcribe", "speech to text", "recognize", "audio"]
|
|
|
):
|
|
|
if content_type == "audio" or "transcribe" in task_lower:
|
|
|
return "Whisper Large v3"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in ["speak", "voice", "text to speech", "tts"]
|
|
|
):
|
|
|
if "fast" in task_lower:
|
|
|
return "Kokoro 82M"
|
|
|
else:
|
|
|
return "VibeVoice 1.5B"
|
|
|
|
|
|
|
|
|
elif (
|
|
|
any(
|
|
|
keyword in task_lower
|
|
|
for keyword in ["classify", "analyze image", "detect", "recognize"]
|
|
|
)
|
|
|
and content_type == "image"
|
|
|
):
|
|
|
if "nsfw" in task_lower or "safe" in task_lower:
|
|
|
return "NSFW Image Detection"
|
|
|
elif "emotion" in task_lower or "face" in task_lower:
|
|
|
return "Facial Emotions Detection"
|
|
|
elif "deepfake" in task_lower or "fake" in task_lower:
|
|
|
return "Deepfake Detection"
|
|
|
else:
|
|
|
return "ViT Base Patch16"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower for keyword in ["translate", "language", "convert"]
|
|
|
):
|
|
|
return "M2M100 1.2B"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in ["summarize", "summary", "abstract", "brief"]
|
|
|
):
|
|
|
return "PEGASUS XSum"
|
|
|
|
|
|
|
|
|
elif any(
|
|
|
keyword in task_lower
|
|
|
for keyword in ["similar", "embed", "vector", "search", "match"]
|
|
|
):
|
|
|
return "Sentence Transformers All MiniLM"
|
|
|
|
|
|
|
|
|
else:
|
|
|
return "MiniMax-M2"
|
|
|
|
|
|
async def execute_hf_task(
|
|
|
self, task: str, content: Any, model_name: Optional[str] = None, **kwargs
|
|
|
) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Execute any HuggingFace task with intelligent model selection
|
|
|
|
|
|
Args:
|
|
|
task: Task description (e.g., "generate image", "transcribe audio")
|
|
|
content: Input content (text, image bytes, audio bytes)
|
|
|
model_name: Specific model to use (optional)
|
|
|
**kwargs: Additional parameters
|
|
|
"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
try:
|
|
|
task_lower = task.lower()
|
|
|
|
|
|
|
|
|
content_type = "text"
|
|
|
if isinstance(content, bytes):
|
|
|
if (
|
|
|
b"PNG" in content[:20]
|
|
|
or b"JFIF" in content[:20]
|
|
|
or b"GIF" in content[:20]
|
|
|
):
|
|
|
content_type = "image"
|
|
|
else:
|
|
|
content_type = "audio"
|
|
|
|
|
|
|
|
|
if not model_name:
|
|
|
model_name = await self.smart_model_selection(task, content_type)
|
|
|
|
|
|
|
|
|
if "generate" in task_lower and (
|
|
|
"image" in task_lower or "picture" in task_lower
|
|
|
):
|
|
|
return await self.generate_image_with_hf(content, model_name, **kwargs)
|
|
|
|
|
|
elif "transcribe" in task_lower or "speech to text" in task_lower:
|
|
|
return await self.transcribe_audio_with_hf(
|
|
|
content, model_name, **kwargs
|
|
|
)
|
|
|
|
|
|
elif "text to speech" in task_lower or "tts" in task_lower:
|
|
|
return await self.synthesize_speech_with_hf(
|
|
|
content, model_name, **kwargs
|
|
|
)
|
|
|
|
|
|
elif "classify" in task_lower and content_type == "image":
|
|
|
return await self.classify_image_with_hf(content, model_name, **kwargs)
|
|
|
|
|
|
elif "embed" in task_lower or "vector" in task_lower:
|
|
|
texts = [content] if isinstance(content, str) else content
|
|
|
return await self.get_text_embeddings_with_hf(texts, model_name)
|
|
|
|
|
|
elif "translate" in task_lower:
|
|
|
return await self.translate_with_hf(
|
|
|
content, model_name=model_name, **kwargs
|
|
|
)
|
|
|
|
|
|
elif "summarize" in task_lower:
|
|
|
return await self.summarize_with_hf(content, model_name, **kwargs)
|
|
|
|
|
|
else:
|
|
|
|
|
|
return await self.generate_text_with_hf(content, model_name, **kwargs)
|
|
|
|
|
|
except Exception as e:
|
|
|
logger.error(f"HuggingFace task execution failed: {e}")
|
|
|
return {"error": f"Task execution failed: {str(e)}"}
|
|
|
|
|
|
async def chat_with_hf_models(
|
|
|
self, message: str, conversation_history: List[Dict] = None
|
|
|
) -> Dict[str, Any]:
|
|
|
"""
|
|
|
Enhanced chat with access to HuggingFace models
|
|
|
|
|
|
This method extends the base agent's capabilities with HF models
|
|
|
"""
|
|
|
|
|
|
message_lower = message.lower()
|
|
|
|
|
|
|
|
|
if "list" in message_lower and (
|
|
|
"model" in message_lower or "hf" in message_lower
|
|
|
):
|
|
|
return self.get_available_hf_models()
|
|
|
|
|
|
|
|
|
hf_keywords = [
|
|
|
"generate image",
|
|
|
"create image",
|
|
|
"draw",
|
|
|
"picture",
|
|
|
"transcribe",
|
|
|
"speech to text",
|
|
|
"audio",
|
|
|
"text to speech",
|
|
|
"speak",
|
|
|
"voice",
|
|
|
"translate",
|
|
|
"language",
|
|
|
"classify image",
|
|
|
"embed",
|
|
|
"vector",
|
|
|
"similarity",
|
|
|
"summarize",
|
|
|
]
|
|
|
|
|
|
if any(keyword in message_lower for keyword in hf_keywords):
|
|
|
|
|
|
return await self.execute_hf_task(message, message)
|
|
|
|
|
|
|
|
|
|
|
|
base_response = await super().chat(message, conversation_history)
|
|
|
|
|
|
|
|
|
if "image" in message_lower and "generate" in message_lower:
|
|
|
|
|
|
base_response["hf_suggestion"] = {
|
|
|
"action": "generate_image",
|
|
|
"models": ["FLUX.1 Dev", "FLUX.1 Schnell", "Stable Diffusion XL"],
|
|
|
"message": "I can also generate images for you using HuggingFace models. Just ask!",
|
|
|
}
|
|
|
|
|
|
return base_response
|
|
|
|
|
|
|
|
|
|
|
|
async def generate_video_with_hf(
|
|
|
self, prompt: str, model_name: Optional[str] = None, **kwargs
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate video from text prompt"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "Stable Video Diffusion"
|
|
|
return await self.hf_tool.text_to_video(
|
|
|
model_name=model_name, prompt=prompt, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_code_with_hf(
|
|
|
self,
|
|
|
prompt: str,
|
|
|
language: str = "python",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate code from natural language description"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "CodeLlama 34B Instruct"
|
|
|
return await self.hf_tool.code_generation(
|
|
|
model_name=model_name, prompt=prompt, language=language, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_app_with_hf(
|
|
|
self,
|
|
|
description: str,
|
|
|
app_type: str = "web_app",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate complete application from description"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "CodeLlama 34B Instruct"
|
|
|
enhanced_prompt = f"Create a {app_type} application: {description}"
|
|
|
return await self.hf_tool.code_generation(
|
|
|
model_name=model_name, prompt=enhanced_prompt, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_3d_model_with_hf(
|
|
|
self, prompt: str, model_name: Optional[str] = None, **kwargs
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate 3D model from text description"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "Shap-E"
|
|
|
return await self.hf_tool.text_to_3d(
|
|
|
model_name=model_name, prompt=prompt, **kwargs
|
|
|
)
|
|
|
|
|
|
async def process_document_with_hf(
|
|
|
self,
|
|
|
document_data: bytes,
|
|
|
task_type: str = "ocr",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Process documents with OCR and analysis"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
if task_type == "ocr":
|
|
|
model_name = model_name or "TrOCR Large"
|
|
|
return await self.hf_tool.ocr(
|
|
|
model_name=model_name, image_data=document_data, **kwargs
|
|
|
)
|
|
|
else:
|
|
|
model_name = model_name or "LayoutLMv3"
|
|
|
return await self.hf_tool.document_analysis(
|
|
|
model_name=model_name, document_data=document_data, **kwargs
|
|
|
)
|
|
|
|
|
|
async def multimodal_chat_with_hf(
|
|
|
self, image_data: bytes, text: str, model_name: Optional[str] = None, **kwargs
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Chat with images using multimodal models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "BLIP-2"
|
|
|
return await self.hf_tool.vision_language(
|
|
|
model_name=model_name, image_data=image_data, text=text, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_music_with_hf(
|
|
|
self,
|
|
|
prompt: str,
|
|
|
duration: int = 30,
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate music from text description"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "MusicGen"
|
|
|
return await self.hf_tool.music_generation(
|
|
|
model_name=model_name, prompt=prompt, duration=duration, **kwargs
|
|
|
)
|
|
|
|
|
|
async def enhance_image_with_hf(
|
|
|
self,
|
|
|
image_data: bytes,
|
|
|
task_type: str = "super_resolution",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Enhance images with various AI models"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
if task_type == "super_resolution":
|
|
|
model_name = model_name or "Real-ESRGAN"
|
|
|
return await self.hf_tool.super_resolution(
|
|
|
model_name=model_name, image_data=image_data, **kwargs
|
|
|
)
|
|
|
elif task_type == "background_removal":
|
|
|
model_name = model_name or "Background Remover"
|
|
|
return await self.hf_tool.background_removal(
|
|
|
model_name=model_name, image_data=image_data, **kwargs
|
|
|
)
|
|
|
elif task_type == "face_restoration":
|
|
|
model_name = model_name or "GFPGAN"
|
|
|
return await self.hf_tool.super_resolution(
|
|
|
model_name=model_name, image_data=image_data, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_creative_content_with_hf(
|
|
|
self,
|
|
|
prompt: str,
|
|
|
content_type: str = "story",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate creative content like stories, poems, etc."""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "GPT-3.5 Creative"
|
|
|
enhanced_prompt = f"Write a {content_type}: {prompt}"
|
|
|
return await self.hf_tool.creative_writing(
|
|
|
model_name=model_name, prompt=enhanced_prompt, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_game_content_with_hf(
|
|
|
self,
|
|
|
description: str,
|
|
|
content_type: str = "character",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate game development content"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "Character AI"
|
|
|
enhanced_prompt = f"Create game {content_type}: {description}"
|
|
|
return await self.hf_tool.creative_writing(
|
|
|
model_name=model_name, prompt=enhanced_prompt, **kwargs
|
|
|
)
|
|
|
|
|
|
async def generate_business_document_with_hf(
|
|
|
self,
|
|
|
context: str,
|
|
|
document_type: str = "email",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Generate business documents and content"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "Email Assistant"
|
|
|
return await self.hf_tool.business_document(
|
|
|
model_name=model_name,
|
|
|
document_type=document_type,
|
|
|
context=context,
|
|
|
**kwargs,
|
|
|
)
|
|
|
|
|
|
async def research_assistance_with_hf(
|
|
|
self,
|
|
|
topic: str,
|
|
|
research_type: str = "analysis",
|
|
|
model_name: Optional[str] = None,
|
|
|
**kwargs,
|
|
|
) -> Dict[str, Any]:
|
|
|
"""Research assistance and scientific content generation"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
model_name = model_name or "SciBERT"
|
|
|
enhanced_prompt = f"Research {research_type} on: {topic}"
|
|
|
return await self.hf_tool.text_generation(
|
|
|
model_name=model_name, prompt=enhanced_prompt, **kwargs
|
|
|
)
|
|
|
|
|
|
def get_available_hf_models(self, category: Optional[str] = None) -> Dict[str, Any]:
|
|
|
"""Get available models by category"""
|
|
|
if not self.hf_tool:
|
|
|
return {"error": "HuggingFace integration not available"}
|
|
|
|
|
|
return self.hf_tool.list_available_models(category=category)
|
|
|
|