Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,87 +1,120 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 4 |
-
from datasets import load_dataset
|
| 5 |
import pandas as pd
|
| 6 |
import pdfplumber
|
|
|
|
|
|
|
| 7 |
import numpy as np
|
| 8 |
-
from
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 9 |
|
| 10 |
-
# Load
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
model =
|
| 14 |
|
| 15 |
-
|
| 16 |
-
def get_rag_embeddings(question, context):
|
| 17 |
-
inputs = tokenizer(question, context, return_tensors="pt", truncation=True)
|
| 18 |
-
with torch.no_grad():
|
| 19 |
-
output = model.generate(input_ids=inputs['input_ids'], attention_mask=inputs['attention_mask'])
|
| 20 |
-
return tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 21 |
|
| 22 |
-
#
|
| 23 |
def extract_text_from_pdf(pdf_file):
|
|
|
|
| 24 |
with pdfplumber.open(pdf_file) as pdf:
|
| 25 |
-
text = ""
|
| 26 |
for page in pdf.pages:
|
| 27 |
page_text = page.extract_text()
|
| 28 |
-
if page_text:
|
| 29 |
text += page_text + "\n"
|
| 30 |
return text
|
| 31 |
|
| 32 |
-
#
|
| 33 |
-
def
|
| 34 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 35 |
|
| 36 |
-
#
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
|
|
|
|
|
|
|
|
|
| 40 |
|
| 41 |
-
# Streamlit app
|
| 42 |
-
st.title("
|
| 43 |
|
| 44 |
-
# CSV file
|
| 45 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
|
|
|
| 46 |
if csv_file:
|
| 47 |
csv_data = pd.read_csv(csv_file)
|
| 48 |
-
st.write("CSV
|
| 49 |
st.write(csv_data)
|
|
|
|
| 50 |
|
| 51 |
-
# PDF file
|
| 52 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
|
|
|
| 53 |
if pdf_file:
|
| 54 |
pdf_text = extract_text_from_pdf(pdf_file)
|
| 55 |
if pdf_text.strip():
|
| 56 |
-
st.
|
| 57 |
-
st.
|
| 58 |
else:
|
| 59 |
st.warning("No extractable text found in the PDF.")
|
| 60 |
|
| 61 |
-
#
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
#
|
| 65 |
-
|
| 66 |
|
| 67 |
-
#
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 82 |
st.write("### Response:")
|
| 83 |
-
st.write(response)
|
| 84 |
-
|
| 85 |
-
st.
|
|
|
|
|
|
|
| 86 |
|
| 87 |
|
|
|
|
| 1 |
import streamlit as st
|
|
|
|
|
|
|
|
|
|
| 2 |
import pandas as pd
|
| 3 |
import pdfplumber
|
| 4 |
+
import torch
|
| 5 |
+
import faiss
|
| 6 |
import numpy as np
|
| 7 |
+
from transformers import pipeline
|
| 8 |
+
from sentence_transformers import SentenceTransformer
|
| 9 |
+
|
| 10 |
+
# Load the Sentence Transformer model for embeddings
|
| 11 |
+
@st.cache_resource
|
| 12 |
+
def load_embedder():
|
| 13 |
+
return SentenceTransformer('all-MiniLM-L6-v2')
|
| 14 |
+
|
| 15 |
+
embedder = load_embedder()
|
| 16 |
|
| 17 |
+
# Load a generative model for answer generation
|
| 18 |
+
@st.cache_resource
|
| 19 |
+
def load_generator():
|
| 20 |
+
return pipeline('text-generation', model='gpt2', tokenizer='gpt2', device=0 if torch.cuda.is_available() else -1)
|
| 21 |
|
| 22 |
+
generator = load_generator()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 23 |
|
| 24 |
+
# Function to extract text from PDF
|
| 25 |
def extract_text_from_pdf(pdf_file):
|
| 26 |
+
text = ""
|
| 27 |
with pdfplumber.open(pdf_file) as pdf:
|
|
|
|
| 28 |
for page in pdf.pages:
|
| 29 |
page_text = page.extract_text()
|
| 30 |
+
if page_text:
|
| 31 |
text += page_text + "\n"
|
| 32 |
return text
|
| 33 |
|
| 34 |
+
# Function to split text into chunks
|
| 35 |
+
def split_text(text, chunk_size=500):
|
| 36 |
+
sentences = text.split('. ')
|
| 37 |
+
chunks = []
|
| 38 |
+
current_chunk = ""
|
| 39 |
+
for sentence in sentences:
|
| 40 |
+
if len(current_chunk) + len(sentence) <= chunk_size:
|
| 41 |
+
current_chunk += sentence + ". "
|
| 42 |
+
else:
|
| 43 |
+
chunks.append(current_chunk.strip())
|
| 44 |
+
current_chunk = sentence + ". "
|
| 45 |
+
if current_chunk:
|
| 46 |
+
chunks.append(current_chunk.strip())
|
| 47 |
+
return chunks
|
| 48 |
|
| 49 |
+
# Function to build FAISS index
|
| 50 |
+
def build_faiss_index(chunks):
|
| 51 |
+
embeddings = embedder.encode(chunks)
|
| 52 |
+
embeddings = np.array(embeddings).astype('float32')
|
| 53 |
+
index = faiss.IndexFlatL2(embeddings.shape[1])
|
| 54 |
+
index.add(embeddings)
|
| 55 |
+
return index, embeddings
|
| 56 |
|
| 57 |
+
# Streamlit app
|
| 58 |
+
st.title("PDF and CSV Chatbot with RAG")
|
| 59 |
|
| 60 |
+
# Upload CSV file
|
| 61 |
csv_file = st.file_uploader("Upload a CSV file", type=["csv"])
|
| 62 |
+
csv_text = ""
|
| 63 |
if csv_file:
|
| 64 |
csv_data = pd.read_csv(csv_file)
|
| 65 |
+
st.write("### CSV Data:")
|
| 66 |
st.write(csv_data)
|
| 67 |
+
csv_text = csv_data.to_csv(index=False)
|
| 68 |
|
| 69 |
+
# Upload PDF file
|
| 70 |
pdf_file = st.file_uploader("Upload a PDF file", type=["pdf"])
|
| 71 |
+
pdf_text = ""
|
| 72 |
if pdf_file:
|
| 73 |
pdf_text = extract_text_from_pdf(pdf_file)
|
| 74 |
if pdf_text.strip():
|
| 75 |
+
st.write("### PDF Text:")
|
| 76 |
+
st.write(pdf_text)
|
| 77 |
else:
|
| 78 |
st.warning("No extractable text found in the PDF.")
|
| 79 |
|
| 80 |
+
# Combine texts
|
| 81 |
+
combined_text = csv_text + "\n" + pdf_text
|
| 82 |
+
if combined_text.strip():
|
| 83 |
+
# Split text into chunks
|
| 84 |
+
chunks = split_text(combined_text)
|
| 85 |
|
| 86 |
+
# Build FAISS index
|
| 87 |
+
index, embeddings = build_faiss_index(chunks)
|
| 88 |
|
| 89 |
+
# Prepare for user input
|
| 90 |
+
user_input = st.text_input("Ask a question about the uploaded data:")
|
| 91 |
+
|
| 92 |
+
if st.button("Get Response"):
|
| 93 |
+
if user_input.strip():
|
| 94 |
+
# Get embedding of user question
|
| 95 |
+
question_embedding = embedder.encode([user_input])
|
| 96 |
+
question_embedding = np.array(question_embedding).astype('float32')
|
| 97 |
+
|
| 98 |
+
# Search FAISS index
|
| 99 |
+
k = 3 # number of nearest neighbors
|
| 100 |
+
distances, indices = index.search(question_embedding, k)
|
| 101 |
+
|
| 102 |
+
# Retrieve the most relevant chunks
|
| 103 |
+
retrieved_chunks = [chunks[idx] for idx in indices[0]]
|
| 104 |
+
|
| 105 |
+
# Combine retrieved chunks
|
| 106 |
+
context = " ".join(retrieved_chunks)
|
| 107 |
+
|
| 108 |
+
# Generate answer
|
| 109 |
+
prompt = context + "\n\nQuestion: " + user_input + "\nAnswer:"
|
| 110 |
+
response = generator(prompt, max_length=200, num_return_sequences=1)
|
| 111 |
+
|
| 112 |
+
# Display response
|
| 113 |
st.write("### Response:")
|
| 114 |
+
st.write(response[0]['generated_text'].split("Answer:")[1].strip())
|
| 115 |
+
else:
|
| 116 |
+
st.warning("Please enter a question.")
|
| 117 |
+
else:
|
| 118 |
+
st.info("Please upload a CSV file or a PDF file to proceed.")
|
| 119 |
|
| 120 |
|