Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,13 +1,16 @@
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
| 3 |
-
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 4 |
import pandas as pd
|
| 5 |
import pdfplumber
|
|
|
|
| 6 |
|
| 7 |
-
#
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Function to extract text from a PDF file
|
| 13 |
def extract_text_from_pdf(pdf_file):
|
|
@@ -60,3 +63,4 @@ if st.button("Get Response"):
|
|
| 60 |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 61 |
st.write("### Response:")
|
| 62 |
st.write(response)
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
import torch
|
|
|
|
| 3 |
import pandas as pd
|
| 4 |
import pdfplumber
|
| 5 |
+
from transformers import RagTokenizer, RagRetriever, RagSequenceForGeneration
|
| 6 |
|
| 7 |
+
# Ensure you are logged in with `huggingface-cli login`
|
| 8 |
+
token = "YOUR_HUGGINGFACE_TOKEN" # Optional if you have logged in via CLI
|
| 9 |
+
|
| 10 |
+
# Load the tokenizer and model for RAG
|
| 11 |
+
tokenizer = RagTokenizer.from_pretrained("facebook/rag-token-nq", use_auth_token=token)
|
| 12 |
+
retriever = RagRetriever.from_pretrained("facebook/wikipedia-dpr", use_auth_token=token)
|
| 13 |
+
model = RagSequenceForGeneration.from_pretrained("facebook/rag-sequence-nq", retriever=retriever, use_auth_token=token)
|
| 14 |
|
| 15 |
# Function to extract text from a PDF file
|
| 16 |
def extract_text_from_pdf(pdf_file):
|
|
|
|
| 63 |
response = tokenizer.batch_decode(output, skip_special_tokens=True)[0]
|
| 64 |
st.write("### Response:")
|
| 65 |
st.write(response)
|
| 66 |
+
|