Mask2Formerlearning / mask2former /data /datasets /register_mapillary_vistas_panoptic.py
Ahsen Khaliq
add files
16aee22
# Copyright (c) Facebook, Inc. and its affiliates.
import json
import os
from detectron2.data import DatasetCatalog, MetadataCatalog
from detectron2.utils.file_io import PathManager
MAPILLARY_VISTAS_SEM_SEG_CATEGORIES = [
{'color': [165, 42, 42],
'id': 1,
'isthing': 1,
'name': 'Bird',
'supercategory': 'animal--bird'},
{'color': [0, 192, 0],
'id': 2,
'isthing': 1,
'name': 'Ground Animal',
'supercategory': 'animal--ground-animal'},
{'color': [196, 196, 196],
'id': 3,
'isthing': 0,
'name': 'Curb',
'supercategory': 'construction--barrier--curb'},
{'color': [190, 153, 153],
'id': 4,
'isthing': 0,
'name': 'Fence',
'supercategory': 'construction--barrier--fence'},
{'color': [180, 165, 180],
'id': 5,
'isthing': 0,
'name': 'Guard Rail',
'supercategory': 'construction--barrier--guard-rail'},
{'color': [90, 120, 150],
'id': 6,
'isthing': 0,
'name': 'Barrier',
'supercategory': 'construction--barrier--other-barrier'},
{'color': [102, 102, 156],
'id': 7,
'isthing': 0,
'name': 'Wall',
'supercategory': 'construction--barrier--wall'},
{'color': [128, 64, 255],
'id': 8,
'isthing': 0,
'name': 'Bike Lane',
'supercategory': 'construction--flat--bike-lane'},
{'color': [140, 140, 200],
'id': 9,
'isthing': 1,
'name': 'Crosswalk - Plain',
'supercategory': 'construction--flat--crosswalk-plain'},
{'color': [170, 170, 170],
'id': 10,
'isthing': 0,
'name': 'Curb Cut',
'supercategory': 'construction--flat--curb-cut'},
{'color': [250, 170, 160],
'id': 11,
'isthing': 0,
'name': 'Parking',
'supercategory': 'construction--flat--parking'},
{'color': [96, 96, 96],
'id': 12,
'isthing': 0,
'name': 'Pedestrian Area',
'supercategory': 'construction--flat--pedestrian-area'},
{'color': [230, 150, 140],
'id': 13,
'isthing': 0,
'name': 'Rail Track',
'supercategory': 'construction--flat--rail-track'},
{'color': [128, 64, 128],
'id': 14,
'isthing': 0,
'name': 'Road',
'supercategory': 'construction--flat--road'},
{'color': [110, 110, 110],
'id': 15,
'isthing': 0,
'name': 'Service Lane',
'supercategory': 'construction--flat--service-lane'},
{'color': [244, 35, 232],
'id': 16,
'isthing': 0,
'name': 'Sidewalk',
'supercategory': 'construction--flat--sidewalk'},
{'color': [150, 100, 100],
'id': 17,
'isthing': 0,
'name': 'Bridge',
'supercategory': 'construction--structure--bridge'},
{'color': [70, 70, 70],
'id': 18,
'isthing': 0,
'name': 'Building',
'supercategory': 'construction--structure--building'},
{'color': [150, 120, 90],
'id': 19,
'isthing': 0,
'name': 'Tunnel',
'supercategory': 'construction--structure--tunnel'},
{'color': [220, 20, 60],
'id': 20,
'isthing': 1,
'name': 'Person',
'supercategory': 'human--person'},
{'color': [255, 0, 0],
'id': 21,
'isthing': 1,
'name': 'Bicyclist',
'supercategory': 'human--rider--bicyclist'},
{'color': [255, 0, 100],
'id': 22,
'isthing': 1,
'name': 'Motorcyclist',
'supercategory': 'human--rider--motorcyclist'},
{'color': [255, 0, 200],
'id': 23,
'isthing': 1,
'name': 'Other Rider',
'supercategory': 'human--rider--other-rider'},
{'color': [200, 128, 128],
'id': 24,
'isthing': 1,
'name': 'Lane Marking - Crosswalk',
'supercategory': 'marking--crosswalk-zebra'},
{'color': [255, 255, 255],
'id': 25,
'isthing': 0,
'name': 'Lane Marking - General',
'supercategory': 'marking--general'},
{'color': [64, 170, 64],
'id': 26,
'isthing': 0,
'name': 'Mountain',
'supercategory': 'nature--mountain'},
{'color': [230, 160, 50],
'id': 27,
'isthing': 0,
'name': 'Sand',
'supercategory': 'nature--sand'},
{'color': [70, 130, 180],
'id': 28,
'isthing': 0,
'name': 'Sky',
'supercategory': 'nature--sky'},
{'color': [190, 255, 255],
'id': 29,
'isthing': 0,
'name': 'Snow',
'supercategory': 'nature--snow'},
{'color': [152, 251, 152],
'id': 30,
'isthing': 0,
'name': 'Terrain',
'supercategory': 'nature--terrain'},
{'color': [107, 142, 35],
'id': 31,
'isthing': 0,
'name': 'Vegetation',
'supercategory': 'nature--vegetation'},
{'color': [0, 170, 30],
'id': 32,
'isthing': 0,
'name': 'Water',
'supercategory': 'nature--water'},
{'color': [255, 255, 128],
'id': 33,
'isthing': 1,
'name': 'Banner',
'supercategory': 'object--banner'},
{'color': [250, 0, 30],
'id': 34,
'isthing': 1,
'name': 'Bench',
'supercategory': 'object--bench'},
{'color': [100, 140, 180],
'id': 35,
'isthing': 1,
'name': 'Bike Rack',
'supercategory': 'object--bike-rack'},
{'color': [220, 220, 220],
'id': 36,
'isthing': 1,
'name': 'Billboard',
'supercategory': 'object--billboard'},
{'color': [220, 128, 128],
'id': 37,
'isthing': 1,
'name': 'Catch Basin',
'supercategory': 'object--catch-basin'},
{'color': [222, 40, 40],
'id': 38,
'isthing': 1,
'name': 'CCTV Camera',
'supercategory': 'object--cctv-camera'},
{'color': [100, 170, 30],
'id': 39,
'isthing': 1,
'name': 'Fire Hydrant',
'supercategory': 'object--fire-hydrant'},
{'color': [40, 40, 40],
'id': 40,
'isthing': 1,
'name': 'Junction Box',
'supercategory': 'object--junction-box'},
{'color': [33, 33, 33],
'id': 41,
'isthing': 1,
'name': 'Mailbox',
'supercategory': 'object--mailbox'},
{'color': [100, 128, 160],
'id': 42,
'isthing': 1,
'name': 'Manhole',
'supercategory': 'object--manhole'},
{'color': [142, 0, 0],
'id': 43,
'isthing': 1,
'name': 'Phone Booth',
'supercategory': 'object--phone-booth'},
{'color': [70, 100, 150],
'id': 44,
'isthing': 0,
'name': 'Pothole',
'supercategory': 'object--pothole'},
{'color': [210, 170, 100],
'id': 45,
'isthing': 1,
'name': 'Street Light',
'supercategory': 'object--street-light'},
{'color': [153, 153, 153],
'id': 46,
'isthing': 1,
'name': 'Pole',
'supercategory': 'object--support--pole'},
{'color': [128, 128, 128],
'id': 47,
'isthing': 1,
'name': 'Traffic Sign Frame',
'supercategory': 'object--support--traffic-sign-frame'},
{'color': [0, 0, 80],
'id': 48,
'isthing': 1,
'name': 'Utility Pole',
'supercategory': 'object--support--utility-pole'},
{'color': [250, 170, 30],
'id': 49,
'isthing': 1,
'name': 'Traffic Light',
'supercategory': 'object--traffic-light'},
{'color': [192, 192, 192],
'id': 50,
'isthing': 1,
'name': 'Traffic Sign (Back)',
'supercategory': 'object--traffic-sign--back'},
{'color': [220, 220, 0],
'id': 51,
'isthing': 1,
'name': 'Traffic Sign (Front)',
'supercategory': 'object--traffic-sign--front'},
{'color': [140, 140, 20],
'id': 52,
'isthing': 1,
'name': 'Trash Can',
'supercategory': 'object--trash-can'},
{'color': [119, 11, 32],
'id': 53,
'isthing': 1,
'name': 'Bicycle',
'supercategory': 'object--vehicle--bicycle'},
{'color': [150, 0, 255],
'id': 54,
'isthing': 1,
'name': 'Boat',
'supercategory': 'object--vehicle--boat'},
{'color': [0, 60, 100],
'id': 55,
'isthing': 1,
'name': 'Bus',
'supercategory': 'object--vehicle--bus'},
{'color': [0, 0, 142],
'id': 56,
'isthing': 1,
'name': 'Car',
'supercategory': 'object--vehicle--car'},
{'color': [0, 0, 90],
'id': 57,
'isthing': 1,
'name': 'Caravan',
'supercategory': 'object--vehicle--caravan'},
{'color': [0, 0, 230],
'id': 58,
'isthing': 1,
'name': 'Motorcycle',
'supercategory': 'object--vehicle--motorcycle'},
{'color': [0, 80, 100],
'id': 59,
'isthing': 0,
'name': 'On Rails',
'supercategory': 'object--vehicle--on-rails'},
{'color': [128, 64, 64],
'id': 60,
'isthing': 1,
'name': 'Other Vehicle',
'supercategory': 'object--vehicle--other-vehicle'},
{'color': [0, 0, 110],
'id': 61,
'isthing': 1,
'name': 'Trailer',
'supercategory': 'object--vehicle--trailer'},
{'color': [0, 0, 70],
'id': 62,
'isthing': 1,
'name': 'Truck',
'supercategory': 'object--vehicle--truck'},
{'color': [0, 0, 192],
'id': 63,
'isthing': 1,
'name': 'Wheeled Slow',
'supercategory': 'object--vehicle--wheeled-slow'},
{'color': [32, 32, 32],
'id': 64,
'isthing': 0,
'name': 'Car Mount',
'supercategory': 'void--car-mount'},
{'color': [120, 10, 10],
'id': 65,
'isthing': 0,
'name': 'Ego Vehicle',
'supercategory': 'void--ego-vehicle'}
]
def load_mapillary_vistas_panoptic_json(json_file, image_dir, gt_dir, semseg_dir, meta):
"""
Args:
image_dir (str): path to the raw dataset. e.g., "~/coco/train2017".
gt_dir (str): path to the raw annotations. e.g., "~/coco/panoptic_train2017".
json_file (str): path to the json file. e.g., "~/coco/annotations/panoptic_train2017.json".
Returns:
list[dict]: a list of dicts in Detectron2 standard format. (See
`Using Custom Datasets </tutorials/datasets.html>`_ )
"""
def _convert_category_id(segment_info, meta):
if segment_info["category_id"] in meta["thing_dataset_id_to_contiguous_id"]:
segment_info["category_id"] = meta["thing_dataset_id_to_contiguous_id"][
segment_info["category_id"]
]
segment_info["isthing"] = True
else:
segment_info["category_id"] = meta["stuff_dataset_id_to_contiguous_id"][
segment_info["category_id"]
]
segment_info["isthing"] = False
return segment_info
with PathManager.open(json_file) as f:
json_info = json.load(f)
ret = []
for ann in json_info["annotations"]:
image_id = ann["image_id"]
# TODO: currently we assume image and label has the same filename but
# different extension, and images have extension ".jpg" for COCO. Need
# to make image extension a user-provided argument if we extend this
# function to support other COCO-like datasets.
image_file = os.path.join(image_dir, os.path.splitext(ann["file_name"])[0] + ".jpg")
label_file = os.path.join(gt_dir, ann["file_name"])
sem_label_file = os.path.join(semseg_dir, ann["file_name"])
segments_info = [_convert_category_id(x, meta) for x in ann["segments_info"]]
ret.append(
{
"file_name": image_file,
"image_id": image_id,
"pan_seg_file_name": label_file,
"sem_seg_file_name": sem_label_file,
"segments_info": segments_info,
}
)
assert len(ret), f"No images found in {image_dir}!"
assert PathManager.isfile(ret[0]["file_name"]), ret[0]["file_name"]
assert PathManager.isfile(ret[0]["pan_seg_file_name"]), ret[0]["pan_seg_file_name"]
assert PathManager.isfile(ret[0]["sem_seg_file_name"]), ret[0]["sem_seg_file_name"]
return ret
def register_mapillary_vistas_panoptic(
name, metadata, image_root, panoptic_root, semantic_root, panoptic_json, instances_json=None
):
"""
Register a "standard" version of ADE20k panoptic segmentation dataset named `name`.
The dictionaries in this registered dataset follows detectron2's standard format.
Hence it's called "standard".
Args:
name (str): the name that identifies a dataset,
e.g. "ade20k_panoptic_train"
metadata (dict): extra metadata associated with this dataset.
image_root (str): directory which contains all the images
panoptic_root (str): directory which contains panoptic annotation images in COCO format
panoptic_json (str): path to the json panoptic annotation file in COCO format
sem_seg_root (none): not used, to be consistent with
`register_coco_panoptic_separated`.
instances_json (str): path to the json instance annotation file
"""
panoptic_name = name
DatasetCatalog.register(
panoptic_name,
lambda: load_mapillary_vistas_panoptic_json(
panoptic_json, image_root, panoptic_root, semantic_root, metadata
),
)
MetadataCatalog.get(panoptic_name).set(
panoptic_root=panoptic_root,
image_root=image_root,
panoptic_json=panoptic_json,
json_file=instances_json,
evaluator_type="mapillary_vistas_panoptic_seg",
ignore_label=65, # different from other datasets, Mapillary Vistas sets ignore_label to 65
label_divisor=1000,
**metadata,
)
_PREDEFINED_SPLITS_ADE20K_PANOPTIC = {
"mapillary_vistas_panoptic_train": (
"mapillary_vistas/training/images",
"mapillary_vistas/training/panoptic",
"mapillary_vistas/training/panoptic/panoptic_2018.json",
"mapillary_vistas/training/labels",
),
"mapillary_vistas_panoptic_val": (
"mapillary_vistas/validation/images",
"mapillary_vistas/validation/panoptic",
"mapillary_vistas/validation/panoptic/panoptic_2018.json",
"mapillary_vistas/validation/labels",
),
}
def get_metadata():
meta = {}
# The following metadata maps contiguous id from [0, #thing categories +
# #stuff categories) to their names and colors. We have to replica of the
# same name and color under "thing_*" and "stuff_*" because the current
# visualization function in D2 handles thing and class classes differently
# due to some heuristic used in Panoptic FPN. We keep the same naming to
# enable reusing existing visualization functions.
thing_classes = [k["name"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES]
thing_colors = [k["color"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES]
stuff_classes = [k["name"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES]
stuff_colors = [k["color"] for k in MAPILLARY_VISTAS_SEM_SEG_CATEGORIES]
meta["thing_classes"] = thing_classes
meta["thing_colors"] = thing_colors
meta["stuff_classes"] = stuff_classes
meta["stuff_colors"] = stuff_colors
# Convert category id for training:
# category id: like semantic segmentation, it is the class id for each
# pixel. Since there are some classes not used in evaluation, the category
# id is not always contiguous and thus we have two set of category ids:
# - original category id: category id in the original dataset, mainly
# used for evaluation.
# - contiguous category id: [0, #classes), in order to train the linear
# softmax classifier.
thing_dataset_id_to_contiguous_id = {}
stuff_dataset_id_to_contiguous_id = {}
for i, cat in enumerate(MAPILLARY_VISTAS_SEM_SEG_CATEGORIES):
if cat["isthing"]:
thing_dataset_id_to_contiguous_id[cat["id"]] = i
# else:
# stuff_dataset_id_to_contiguous_id[cat["id"]] = i
# in order to use sem_seg evaluator
stuff_dataset_id_to_contiguous_id[cat["id"]] = i
meta["thing_dataset_id_to_contiguous_id"] = thing_dataset_id_to_contiguous_id
meta["stuff_dataset_id_to_contiguous_id"] = stuff_dataset_id_to_contiguous_id
return meta
def register_all_mapillary_vistas_panoptic(root):
metadata = get_metadata()
for (
prefix,
(image_root, panoptic_root, panoptic_json, semantic_root),
) in _PREDEFINED_SPLITS_ADE20K_PANOPTIC.items():
# The "standard" version of COCO panoptic segmentation dataset,
# e.g. used by Panoptic-DeepLab
register_mapillary_vistas_panoptic(
prefix,
metadata,
os.path.join(root, image_root),
os.path.join(root, panoptic_root),
os.path.join(root, semantic_root),
os.path.join(root, panoptic_json),
)
_root = os.getenv("DETECTRON2_DATASETS", "datasets")
register_all_mapillary_vistas_panoptic(_root)