Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,21 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
import torch
|
| 4 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 5 |
+
|
| 6 |
+
app = FastAPI()
|
| 7 |
+
|
| 8 |
+
# Cargar modelo
|
| 9 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 10 |
+
model_name = "nikravan/glm-4vq"
|
| 11 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 12 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16, device_map="auto")
|
| 13 |
+
|
| 14 |
+
class Query(BaseModel):
|
| 15 |
+
question: str
|
| 16 |
+
|
| 17 |
+
@app.post("/predict")
|
| 18 |
+
def predict(data: Query):
|
| 19 |
+
inputs = tokenizer(data.question, return_tensors="pt").to(device)
|
| 20 |
+
outputs = model.generate(**inputs, max_length=200)
|
| 21 |
+
return {"answer": tokenizer.decode(outputs[0])}
|