Spaces:
Sleeping
Sleeping
File size: 12,143 Bytes
e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 d23996b e9ea7c0 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 |
from fastapi import FastAPI, HTTPException, Depends, status
from fastapi.security import OAuth2PasswordBearer, OAuth2PasswordRequestForm
from fastapi.middleware.cors import CORSMiddleware
from sqlalchemy.orm import Session, joinedload
from sqlalchemy import func
from datetime import datetime, timedelta
from typing import Optional, List
from jose import JWTError, jwt
from passlib.context import CryptContext
from pydantic import BaseModel
import uvicorn
import os
import base64
from chat_engine import ChatEngine
from image_engine import ImageEngine
import models
import schemas
import firebase_admin
from firebase_admin import credentials, firestore, auth
# Initialize Firebase Admin
if not firebase_admin._apps:
if os.path.exists("serviceAccountKey.json"):
cred = credentials.Certificate("serviceAccountKey.json")
else:
# Try getting from env var (for Hugging Face)
key_json = os.environ.get("FIREBASE_SERVICE_ACCOUNT_KEY")
if key_json:
import json
cred_dict = json.loads(key_json)
cred = credentials.Certificate(cred_dict)
else:
print("Warning: No service account key found. Firebase features will fail.")
cred = None
if cred:
firebase_admin.initialize_app(cred)
if firebase_admin._apps:
db = firestore.client()
else:
db = None
# Initialize engines
print("Initializing AI Engines...")
chat_engine = ChatEngine()
image_engine = ImageEngine()
rag_engine = RAGEngine()
print("AI Engines Ready!")
# Auth Dependency
oauth2_scheme = OAuth2PasswordBearer(tokenUrl="token")
async def get_current_user(token: str = Depends(oauth2_scheme)):
try:
decoded_token = auth.verify_id_token(token)
uid = decoded_token['uid']
# Get user data from Firestore
user_doc = db.collection('users').document(uid).get()
if not user_doc.exists:
# Create user if not exists (first login)
user_data = {
"email": decoded_token.get('email'),
"full_name": decoded_token.get('name', 'User'),
"created_at": datetime.utcnow(),
"is_admin": False
}
db.collection('users').document(uid).set(user_data)
return {**user_data, "id": uid}
return {**user_doc.to_dict(), "id": uid}
except Exception as e:
raise HTTPException(
status_code=status.HTTP_401_UNAUTHORIZED,
detail=f"Invalid authentication credentials: {str(e)}",
headers={"WWW-Authenticate": "Bearer"},
)
async def get_current_admin(current_user: dict = Depends(get_current_user)):
if not current_user.get("is_admin"):
raise HTTPException(status_code=403, detail="Not authorized")
return current_user
# Auth Endpoints
# Note: Registration and Login are handled by Firebase on the Frontend.
# The backend only verifies the ID token via get_current_user.
@app.get("/users/me")
async def read_users_me(current_user: dict = Depends(get_current_user)):
return current_user
# Conversation Endpoints
@app.post("/conversations")
async def create_conversation(conversation: schemas.ConversationCreate, current_user: dict = Depends(get_current_user)):
try:
new_conv_ref = db.collection('conversations').document()
conv_data = {
"id": new_conv_ref.id,
"user_id": current_user['id'],
"title": conversation.title,
"created_at": datetime.utcnow(),
"updated_at": datetime.utcnow()
}
new_conv_ref.set(conv_data)
return conv_data
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/conversations")
async def get_conversations(current_user: dict = Depends(get_current_user)):
try:
docs = db.collection('conversations').where('user_id', '==', current_user['id']).order_by('updated_at', direction=firestore.Query.DESCENDING).stream()
return [doc.to_dict() for doc in docs]
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/conversations/{conversation_id}/messages")
async def get_conversation_messages(conversation_id: str, current_user: dict = Depends(get_current_user)):
try:
# Verify ownership
conv_ref = db.collection('conversations').document(conversation_id)
conv = conv_ref.get()
if not conv.exists or conv.to_dict()['user_id'] != current_user['id']:
raise HTTPException(status_code=404, detail="Conversation not found")
msgs = conv_ref.collection('messages').order_by('timestamp').stream()
return [msg.to_dict() for msg in msgs]
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Saved Prompt Endpoints
@app.post("/prompts")
async def create_prompt(prompt: schemas.SavedPromptCreate, current_user: dict = Depends(get_current_user)):
try:
new_prompt_ref = db.collection('prompts').document()
prompt_data = {
"id": new_prompt_ref.id,
"user_id": current_user['id'],
"title": prompt.title,
"content": prompt.content,
"tags": prompt.tags,
"created_at": datetime.utcnow()
}
new_prompt_ref.set(prompt_data)
return prompt_data
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/prompts")
async def get_prompts(current_user: dict = Depends(get_current_user)):
try:
docs = db.collection('prompts').where('user_id', '==', current_user['id']).order_by('created_at', direction=firestore.Query.DESCENDING).stream()
return [doc.to_dict() for doc in docs]
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.delete("/prompts/{prompt_id}")
async def delete_prompt(prompt_id: str, current_user: dict = Depends(get_current_user)):
try:
prompt_ref = db.collection('prompts').document(prompt_id)
prompt = prompt_ref.get()
if not prompt.exists or prompt.to_dict()['user_id'] != current_user['id']:
raise HTTPException(status_code=404, detail="Prompt not found")
prompt_ref.delete()
return {"status": "success"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
# Admin Endpoints
@app.get("/admin/users")
async def get_all_users(current_user: dict = Depends(get_current_admin)):
try:
users = db.collection('users').stream()
result = []
for user in users:
user_data = user.to_dict()
# Count messages (this might be expensive in Firestore, maybe skip or approximate)
# For now, let's just return user data
result.append(user_data)
return result
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.get("/admin/activity")
async def get_all_activity(current_user: dict = Depends(get_current_admin)):
# This is hard in Firestore without a global collection group query
# For now, return empty or implement a specific 'activity' log collection
return []
# Protected AI Endpoints
class ChatRequest(BaseModel):
message: str
history: list = []
language: str = "English"
conversation_id: Optional[int] = None
class ImageRequest(BaseModel):
prompt: str
@app.get("/")
def read_root():
return {"status": "Backend is running", "message": "Go to /docs to see the API"}
@app.post("/chat")
async def chat(request: ChatRequest, current_user: dict = Depends(get_current_user)):
# ... (Keep existing /chat for backward compatibility if needed, or redirect logic)
# For now, let's keep /chat as blocking and add /chat/stream
try:
# Generate Response
response = chat_engine.generate_response(request.message, request.history)
# Save to Firestore if conversation_id is present
if request.conversation_id:
conv_ref = db.collection('conversations').document(request.conversation_id)
# User Msg
conv_ref.collection('messages').add({
"role": "user",
"content": request.message,
"timestamp": datetime.utcnow()
})
# AI Msg
conv_ref.collection('messages').add({
"role": "assistant",
"content": response,
"timestamp": datetime.utcnow()
})
conv_ref.update({"updated_at": datetime.utcnow()})
return {"response": response}
except Exception as e:
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
# RAG Endpoints
@app.post("/upload")
async def upload_file(file: UploadFile = File(...), current_user: dict = Depends(get_current_user)):
try:
# Save file locally
upload_dir = "uploads"
os.makedirs(upload_dir, exist_ok=True)
file_path = os.path.join(upload_dir, file.filename)
with open(file_path, "wb") as buffer:
shutil.copyfileobj(file.file, buffer)
# Ingest into RAG
rag_engine.ingest_file(file_path)
return {"filename": file.filename, "status": "ingested"}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
@app.post("/chat/stream")
async def chat_stream(request: ChatRequest, current_user: dict = Depends(get_current_user)):
try:
# Check for RAG context
context = ""
rag_docs = rag_engine.search(request.message)
if rag_docs:
context = "\n\nRelevant Context:\n" + "\n".join(rag_docs) + "\n\n"
print(f"Found {len(rag_docs)} relevant documents.")
# Save User Message
if request.conversation_id:
conv_ref = db.collection('conversations').document(request.conversation_id)
conv_ref.collection('messages').add({
"role": "user",
"content": request.message,
"timestamp": datetime.utcnow()
})
conv_ref.update({"updated_at": datetime.utcnow()})
async def stream_generator():
full_response = ""
# Prepend context to the message sent to AI (but not saved in DB as user message)
augmented_message = context + request.message if context else request.message
for token in chat_engine.generate_stream(augmented_message, request.history, request.language):
full_response += token
yield token
# Save AI Message after generation
if request.conversation_id:
conv_ref = db.collection('conversations').document(request.conversation_id)
conv_ref.collection('messages').add({
"role": "assistant",
"content": full_response,
"timestamp": datetime.utcnow()
})
print(f"Generated response for conv {request.conversation_id}")
return StreamingResponse(stream_generator(), media_type="text/plain")
except Exception as e:
import traceback
traceback.print_exc()
raise HTTPException(status_code=500, detail=str(e))
@app.post("/generate-image")
async def generate_image(request: ImageRequest, current_user: dict = Depends(get_current_user)):
try:
# Generate image to a temporary file
filename = "temp_generated.png"
image_engine.generate_image(request.prompt, output_path=filename)
# Read and encode to base64 to send to frontend
with open(filename, "rb") as image_file:
encoded_string = base64.b64encode(image_file.read()).decode('utf-8')
return {"image_base64": encoded_string}
except Exception as e:
raise HTTPException(status_code=500, detail=str(e))
if __name__ == "__main__":
uvicorn.run(app, host="0.0.0.0", port=8000)
|