Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pickle
|
| 4 |
+
from keras.models import load_model
|
| 5 |
+
from tensorflow.keras.applications.resnet50 import ResNet50, preprocess_input
|
| 6 |
+
from tensorflow.keras.preprocessing import image
|
| 7 |
+
from tensorflow.keras.preprocessing.sequence import pad_sequences
|
| 8 |
+
|
| 9 |
+
# Load the trained model
|
| 10 |
+
model = load_model('image_captioning_model.h5')
|
| 11 |
+
|
| 12 |
+
# Load ResNet50 for feature extraction
|
| 13 |
+
resnet_model = ResNet50(include_top=False, weights='imagenet', pooling='avg', input_shape=(224, 224, 3))
|
| 14 |
+
|
| 15 |
+
# Load word mappings and config
|
| 16 |
+
with open('words_to_indices.pkl', 'rb') as f:
|
| 17 |
+
words_to_indices = pickle.load(f)
|
| 18 |
+
|
| 19 |
+
with open('indices_to_words.pkl', 'rb') as f:
|
| 20 |
+
indices_to_words = pickle.load(f)
|
| 21 |
+
|
| 22 |
+
with open('config.pkl', 'rb') as f:
|
| 23 |
+
config = pickle.load(f)
|
| 24 |
+
vocab_size = config['vocab_size']
|
| 25 |
+
max_length = config['max_length']
|
| 26 |
+
|
| 27 |
+
def extract_features(img):
|
| 28 |
+
"""Extract features from image using ResNet50"""
|
| 29 |
+
img = img.resize((224, 224))
|
| 30 |
+
x = image.img_to_array(img)
|
| 31 |
+
x = np.expand_dims(x, axis=0)
|
| 32 |
+
x = preprocess_input(x)
|
| 33 |
+
features = resnet_model.predict(x, verbose=0)
|
| 34 |
+
return features.squeeze()
|
| 35 |
+
|
| 36 |
+
def greedy_search(photo):
|
| 37 |
+
"""Generate caption using greedy search"""
|
| 38 |
+
photo = photo.reshape(1, 2048)
|
| 39 |
+
in_text = '<start>'
|
| 40 |
+
|
| 41 |
+
for i in range(max_length):
|
| 42 |
+
sequence = [words_to_indices.get(s, 0) for s in in_text.split(" ")]
|
| 43 |
+
sequence = pad_sequences([sequence], maxlen=max_length, padding='post')
|
| 44 |
+
y_pred = model.predict([photo, sequence], verbose=0)
|
| 45 |
+
y_pred = np.argmax(y_pred[0])
|
| 46 |
+
word = indices_to_words.get(y_pred, 'Unk')
|
| 47 |
+
in_text += ' ' + word
|
| 48 |
+
if word == '<end>':
|
| 49 |
+
break
|
| 50 |
+
|
| 51 |
+
final = in_text.split()
|
| 52 |
+
final = final[1:-1]
|
| 53 |
+
return " ".join(final)
|
| 54 |
+
|
| 55 |
+
def beam_search(photo, k=3):
|
| 56 |
+
"""Generate caption using beam search"""
|
| 57 |
+
photo = photo.reshape(1, 2048)
|
| 58 |
+
in_text = '<start>'
|
| 59 |
+
sequence = [words_to_indices.get(s, 0) for s in in_text.split(" ")]
|
| 60 |
+
sequence = pad_sequences([sequence], maxlen=max_length, padding='post')
|
| 61 |
+
y_pred = model.predict([photo, sequence], verbose=0)
|
| 62 |
+
|
| 63 |
+
predicted = []
|
| 64 |
+
y_pred = y_pred.reshape(-1)
|
| 65 |
+
for i in range(y_pred.shape[0]):
|
| 66 |
+
predicted.append((i, y_pred[i]))
|
| 67 |
+
predicted = sorted(predicted, key=lambda x: x[1], reverse=True)
|
| 68 |
+
|
| 69 |
+
b_search = []
|
| 70 |
+
for i in range(k):
|
| 71 |
+
word = indices_to_words.get(predicted[i][0], 'Unk')
|
| 72 |
+
b_search.append((in_text + ' ' + word, predicted[i][1]))
|
| 73 |
+
|
| 74 |
+
for idx in range(max_length):
|
| 75 |
+
b_search_square = []
|
| 76 |
+
for text in b_search:
|
| 77 |
+
if text[0].split(" ")[-1] == "<end>":
|
| 78 |
+
break
|
| 79 |
+
sequence = [words_to_indices.get(s, 0) for s in text[0].split(" ")]
|
| 80 |
+
sequence = pad_sequences([sequence], maxlen=max_length, padding='post')
|
| 81 |
+
y_pred = model.predict([photo, sequence], verbose=0)
|
| 82 |
+
predicted = []
|
| 83 |
+
y_pred = y_pred.reshape(-1)
|
| 84 |
+
for i in range(y_pred.shape[0]):
|
| 85 |
+
predicted.append((i, y_pred[i]))
|
| 86 |
+
predicted = sorted(predicted, key=lambda x: x[1], reverse=True)
|
| 87 |
+
for i in range(k):
|
| 88 |
+
word = indices_to_words.get(predicted[i][0], 'Unk')
|
| 89 |
+
b_search_square.append((text[0] + ' ' + word, predicted[i][1] * text[1]))
|
| 90 |
+
if len(b_search_square) > 0:
|
| 91 |
+
b_search = sorted(b_search_square, key=lambda x: x[1], reverse=True)[:k]
|
| 92 |
+
|
| 93 |
+
final = b_search[0][0].split()
|
| 94 |
+
final = final[1:-1]
|
| 95 |
+
return " ".join(final)
|
| 96 |
+
|
| 97 |
+
def generate_caption(img, search_method="Greedy Search"):
|
| 98 |
+
"""Main function to generate caption from image"""
|
| 99 |
+
try:
|
| 100 |
+
# Extract features
|
| 101 |
+
features = extract_features(img)
|
| 102 |
+
|
| 103 |
+
# Generate caption based on selected method
|
| 104 |
+
if search_method == "Greedy Search":
|
| 105 |
+
caption = greedy_search(features)
|
| 106 |
+
else: # Beam Search
|
| 107 |
+
caption = beam_search(features, k=3)
|
| 108 |
+
|
| 109 |
+
return caption
|
| 110 |
+
except Exception as e:
|
| 111 |
+
return f"Error generating caption: {str(e)}"
|
| 112 |
+
|
| 113 |
+
# Create Gradio interface
|
| 114 |
+
demo = gr.Interface(
|
| 115 |
+
fn=generate_caption,
|
| 116 |
+
inputs=[
|
| 117 |
+
gr.Image(type="pil", label="Upload Image"),
|
| 118 |
+
gr.Radio(
|
| 119 |
+
choices=["Greedy Search", "Beam Search (k=3)"],
|
| 120 |
+
value="Greedy Search",
|
| 121 |
+
label="Caption Generation Method"
|
| 122 |
+
)
|
| 123 |
+
],
|
| 124 |
+
outputs=gr.Textbox(label="Generated Caption"),
|
| 125 |
+
title="Image Captioning with LSTM",
|
| 126 |
+
description="Upload an image to generate a descriptive caption. Choose between Greedy Search or Beam Search for caption generation.",
|
| 127 |
+
examples=[
|
| 128 |
+
# Add example images if you have them
|
| 129 |
+
],
|
| 130 |
+
theme=gr.themes.Soft()
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
if __name__ == "__main__":
|
| 134 |
+
demo.launch()
|