File size: 12,597 Bytes
14b3df5
 
 
 
d52e547
 
 
 
14b3df5
d52e547
3f61a03
14b3df5
 
 
8647612
 
 
 
 
de2cb80
14b3df5
 
 
 
 
 
d52e547
6c05485
14b3df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688bb5e
6c05485
3f61a03
14b3df5
688bb5e
3f61a03
f6dbe34
688bb5e
 
 
 
 
 
 
 
f6dbe34
 
688bb5e
 
14b3df5
f6dbe34
14b3df5
3f61a03
d52e547
14b3df5
688bb5e
14b3df5
3f61a03
688bb5e
 
3f61a03
688bb5e
 
3f61a03
688bb5e
3f61a03
688bb5e
3f61a03
688bb5e
6c05485
14b3df5
688bb5e
14b3df5
f6dbe34
3f61a03
 
688bb5e
3f61a03
688bb5e
3f61a03
688bb5e
 
 
 
 
 
 
3f61a03
688bb5e
3f61a03
688bb5e
 
 
 
3f61a03
688bb5e
 
 
 
 
14b3df5
 
 
3f61a03
14b3df5
 
688bb5e
7e409b0
688bb5e
 
 
 
 
3f61a03
688bb5e
 
106a582
3f61a03
 
688bb5e
d52e547
14b3df5
 
 
3f61a03
14b3df5
 
 
3f61a03
14b3df5
3f61a03
14b3df5
6c05485
d52e547
70042b3
d52e547
14b3df5
d52e547
14b3df5
d52e547
 
6c05485
688bb5e
3f61a03
f6dbe34
d52e547
 
106a582
 
14b3df5
 
 
d52e547
 
 
f6dbe34
d52e547
14b3df5
3f61a03
d52e547
 
106a582
d52e547
3f61a03
106a582
 
 
 
 
3f61a03
106a582
 
 
688bb5e
3f61a03
 
106a582
 
3f61a03
106a582
3f61a03
 
 
106a582
688bb5e
106a582
 
 
 
 
3f61a03
 
106a582
14b3df5
3f61a03
14b3df5
 
3f61a03
14b3df5
 
3f61a03
 
f5638f4
14b3df5
 
688bb5e
 
14b3df5
3f61a03
f5638f4
 
 
ccb974f
f5638f4
70042b3
d97596f
 
ccb974f
70042b3
 
 
ccb974f
70042b3
d97596f
ccb974f
 
3f61a03
 
d97596f
ccb974f
70042b3
d97596f
 
70042b3
de2cb80
 
 
 
 
 
70042b3
de2cb80
 
ccb974f
de2cb80
70042b3
de2cb80
 
 
 
 
 
 
 
 
 
 
 
 
f5638f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
import os
import re
import numpy as np
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer

# ========================
# Config
# ========================
DATASET_ID = "motimmom/cocktails_clean_nobrand"
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
FLAVOR_BOOST = 0.20

# Use the image you uploaded at the root of the Space repo:
BACKGROUND_IMAGE_URL = "file=bar.jpg"  # <-- safest: served by Gradio from your Space files

# If you prefer the remote URL, make sure the space name uses the HY-PHEN:
# BACKGROUND_IMAGE_URL = "https://huggingface.co/spaces/OGOGOG/AI-Bartender/resolve/main/bar.jpg"

# If dataset is private, add Space secret HF_TOKEN (read scope)
HF_READ_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")
load_kwargs = {}
if HF_READ_TOKEN:
    load_kwargs["token"] = HF_READ_TOKEN
    load_kwargs["use_auth_token"] = HF_READ_TOKEN

# ========================
# Base & Flavor tagging rules
# ========================
BASE_SPIRITS = {
    "vodka":    [r"\bvodka\b"],
    "gin":      [r"\bgin\b"],
    "rum":      [r"\brum\b", r"\bwhite rum\b", r"\bdark rum\b"],
    "tequila":  [r"\btequila\b"],
    "whiskey":  [r"\bwhisk(?:e|)y\b", r"\bbourbon\b", r"\bscotch\b", r"\brye\b"],
    "mezcal":   [r"\bmezcal\b"],
    "brandy":   [r"\bbrandy\b", r"\bcognac\b"],
    "vermouth": [r"\bvermouth\b"],
    "other":    [r"\btriple sec\b", r"\bliqueur\b", r"\bcointreau\b", r"\baperol\b", r"\bcampari\b"],
}
FLAVORS = {
    "citrus":      [r"lime", r"lemon", r"grapefruit", r"orange", r"\bcitrus\b"],
    "sweet":       [r"simple syrup", r"\bsugar\b", r"\bhoney\b", r"\bagave\b", r"\bmaple\b", r"\bgrenadine\b", r"\bvanilla\b", r"\bsweet\b"],
    "sour":        [r"\bsour\b", r"lemon juice", r"lime juice", r"\bacid\b"],
    "bitter":      [r"\bbitter", r"\bamaro\b", r"\bcampari\b", r"\baperol\b"],
    "smoky":       [r"\bsmoky\b", r"\bsmoked\b", r"\bmezcal\b", r"\bpeated\b"],
    "spicy":       [r"\bspicy\b", r"\bchili\b", r"\bginger\b", r"\bjalapeño\b", r"\bcayenne\b"],
    "herbal":      [r"\bmint\b", r"\bbasil\b", r"\brosemary\b", r"\bthyme\b", r"\bherb", r"\bchartreuse\b"],
    "fruity":      [r"pineapple", r"cranberr", r"strawberr", r"mango", r"passion", r"peach", r"\bfruit"],
    "creamy":      [r"\bcream\b", r"coconut cream", r"\begg white\b", r"\bcreamy\b"],
    "floral":      [r"\brose\b", r"\bviolet\b", r"\belderflower\b", r"\blavender\b", r"\bfloral\b"],
    "refreshing":  [r"soda water", r"\btonic\b", r"\bhighball\b", r"\bcollins\b", r"\bfizz\b", r"\brefreshing\b"],
    "boozy":       [r"\bstirred\b", r"\bmartini\b", r"old fashioned", r"\bboozy\b", r"\bstrong\b"],
}
FLAVOR_OPTIONS = list(FLAVORS.keys())

# ========================
# Robust extraction helpers (with measures)
# ========================
def _clean(s): return s.strip() if isinstance(s, str) else ""

def _norm_measure(s: str) -> str:
    if not isinstance(s, str): return ""
    s = re.sub(r"\s+", " ", s.strip())
    s = re.sub(r"\bml\b", "ml", s, flags=re.I)
    s = re.sub(r"\boz\b", "oz", s, flags=re.I)
    s = re.sub(r"\btsp\b", "tsp", s, flags=re.I)
    s = re.sub(r"\btbsp\b", "tbsp", s, flags=re.I)
    return s

def _join_measure_name(measure, name):
    m = _norm_measure(measure)
    n = name.strip() if isinstance(name, str) else ""
    if m and n: return f"{m} {n}"
    return n or m

def _split_ingredient_blob(s):
    if not isinstance(s, str): return []
    parts = re.split(r"[,\n;•\-–]+", s)
    return [p.strip() for p in parts if p and p.strip()]

def _from_list_of_pairs(val):
    out_disp, out_tokens = [], []
    for x in val:
        if not isinstance(x, (list, tuple)) or len(x) == 0: continue
        if len(x) == 1:
            name = str(x[0]).strip()
            if name: out_disp.append(name); out_tokens.append(name.lower()); continue
        a, b = str(x[0]).strip(), str(x[1]).strip()
        if re.search(r"\d", a) and not re.search(r"\d", b):
            disp = _join_measure_name(a, b); out_disp.append(disp); out_tokens.append(b.lower())
        elif re.search(r"\d", b) and not re.search(r"\d", a):
            disp = _join_measure_name(b, a); out_disp.append(disp); out_tokens.append(a.lower())
        else:
            disp = (a + " " + b).strip(); out_disp.append(disp); out_tokens.append((b if len(b) > len(a) else a).lower())
    return out_disp, out_tokens

def _from_list_of_dicts(val):
    out_disp, out_tokens = [], []
    for x in val:
        if not isinstance(x, dict): continue
        name = next((x[k].strip() for k in ["name","ingredient","item","raw","text","strIngredient"] if isinstance(x.get(k), str) and x[k].strip()), None)
        meas = next((x[k].strip() for k in ["measure","qty","quantity","amount","unit","Measure","strMeasure"] if isinstance(x.get(k), str) and x[k].strip()), None)
        if name and meas:
            out_disp.append(_join_measure_name(meas, name)); out_tokens.append(name.lower())
        elif name:
            out_disp.append(name); out_tokens.append(name.lower())
    return out_disp, out_tokens

def _ingredients_from_any(val):
    if isinstance(val, str):
        lines = _split_ingredient_blob(val)
        tokens = []
        for line in lines:
            parts = re.split(r"\s+", line); idx = 0
            for i, p in enumerate(parts):
                if re.search(r"[A-Za-z]", p): idx = i; break
            tokens.append(" ".join(parts[idx:]).lower())
        return lines, tokens
    if isinstance(val, list) and all(isinstance(x, str) for x in val):
        disp = [x.strip() for x in val if x and x.strip()]
        return disp, [x.lower().strip() for x in disp]
    if isinstance(val, list) and any(isinstance(x, (list, tuple)) for x in val):
        return _from_list_of_pairs(val)
    if isinstance(val, list) and any(isinstance(x, dict) for x in val):
        return _from_list_of_dicts(val)
    return [], []

def _get_title(row, cols):
    for k in ["title","name","cocktail_name","drink","Drink","strDrink"]:
        if k in cols and _clean(row.get(k)): return _clean(row[k])
    return "Untitled"

def _get_ingredients_with_measures(row, cols):
    if "ingredient_tokens" in cols and row.get("ingredient_tokens"):
        toks = [str(x).strip().lower() for x in row["ingredient_tokens"] if str(x).strip()]
        for mkey in ["measure_tokens","measures","measure_list"]:
            if mkey in cols and row.get(mkey) and isinstance(row[mkey], list) and len(row[mkey]) == len(toks):
                disp = []
                for m, n in zip(row[mkey], row["ingredient_tokens"]):
                    m = _norm_measure(str(m)); n = str(n).strip()
                    disp.append(_join_measure_name(m, n) if m else n)
                return disp, toks
        return toks, toks
    for key in ["ingredients","ingredients_raw","raw_ingredients","Raw_Ingredients","Raw Ingredients","ingredient_list","ingredients_list"]:
        if key in cols and row.get(key) not in (None, "", [], {}): return _ingredients_from_any(row[key])
    return [], []

def tag_base(text):
    t = text.lower()
    for base, pats in BASE_SPIRITS.items():
        if any(re.search(p, t) for p in pats): return base
    return "other"

def tag_flavors(text):
    t = text.lower(); tags = []
    for flv, pats in FLAVORS.items():
        if any(re.search(p, t) for p in pats): tags.append(flv)
    return tags

# ========================
# Load dataset & build docs
# ========================
ds = load_dataset(DATASET_ID, split="train", **load_kwargs)
cols = ds.column_names

DOCS = []
for r in ds:
    title = _get_title(r, cols)
    ing_disp, ing_tokens = _get_ingredients_with_measures(r, cols)
    ing_disp = [x for x in ing_disp if x]; ing_tokens = [x for x in ing_tokens if x]
    fused = f"{title}\nIngredients: {', '.join(ing_tokens)}"
    DOCS.append({
        "title": title,
        "ingredients_display": ing_disp,
        "ingredients_tokens": ing_tokens,
        "text": fused,
        "base": tag_base(fused),
        "flavors": tag_flavors(fused),
    })

# ========================
# Embeddings
# ========================
encoder = SentenceTransformer(EMBED_MODEL)
doc_embs = encoder.encode([d["text"] for d in DOCS], normalize_embeddings=True, convert_to_numpy=True).astype("float32")

# ========================
# Pretty ingredient formatting
# ========================
_MEASURE_RE = re.compile(r"^\s*(?P<meas>(?:\d+(\.\d+)?|\d+\s*/\s*\d+|\d+\s*\d*/\d+)\s*(?:ml|oz|tsp|tbsp)?|\d+\s*(?:ml|oz|tsp|tbsp)|(?:dash|dashes|drop|drops|barspoon)s?)\b[\s\-–:]*", flags=re.I)

def _split_measure_name_line(line: str):
    if not isinstance(line, str): return None, line
    m = _MEASURE_RE.match(line.strip())
    if m:
        meas = _norm_measure(m.group("meas")); name = line[m.end():].strip()
        return meas, name or ""
    return "", line.strip()

def _format_ingredients_markdown(lines):
    """Bullet points as 'Ingredient (amount)'. Also removes [ and ]."""
    if not lines: return "—"
    formatted = []
    for ln in lines:
        ln = ln.replace("[","").replace("]","")
        meas, name = _split_measure_name_line(ln)
        if name and meas: formatted.append(f"- {name} ({meas})")
        elif name:        formatted.append(f"- {name}")
        else:             formatted.append(f"- {ln}")
    return "\n".join(formatted)

# ========================
# Recommendation
# ========================
def recommend(base_alcohol_text, flavor, top_k=3):
    inferred_base = tag_base(base_alcohol_text or "")
    if flavor not in FLAVOR_OPTIONS: return "Please choose a flavor."
    idxs = [i for i, d in enumerate(DOCS) if d["base"] == inferred_base] or list(range(len(DOCS)))
    q_text = f"Base spirit: {base_alcohol_text}. Flavor: {flavor}. Cocktail recipe."
    q_emb = encoder.encode([q_text], normalize_embeddings=True, convert_to_numpy=True).astype("float32")[0]
    sims = doc_embs[idxs].dot(q_emb)
    scored = []
    for pos, i in enumerate(idxs):
        score = float(sims[pos]) + (FLAVOR_BOOST if flavor in DOCS[i]['flavors'] else 0.0)
        scored.append((score, i))
    scored.sort(reverse=True)
    picks = scored[:max(1,int(top_k))]
    if not picks: return "No matches found."
    blocks = []
    for sc, i in picks:
        d = DOCS[i]
        ing_lines = d["ingredients_display"] or d["ingredients_tokens"]
        ing_md = _format_ingredients_markdown(ing_lines)
        meta = f"**Base:** {d['base']}  |  **Flavor tags:** {', '.join(d['flavors']) or '—'}  |  **Score:** {sc:.3f}"
        blocks.append(f"### {d['title']}\n{meta}\n\n**Ingredients:**\n{ing_md}")
    return "\n\n---\n\n".join(blocks)

# ========================
# Background + UI (robust)
# ========================
CUSTOM_CSS = f"""
html, body, #root {{ height: 100%; }}
/* Background on BODY to avoid component stacking issues */
body {{
  background-image: url('{BACKGROUND_IMAGE_URL}');
  background-size: cover;
  background-position: center;
  background-attachment: fixed;
}}
/* Dark overlay for text contrast */
body::before {{
  content: "";
  position: fixed;
  inset: 0;
  background: rgba(0,0,0,0.30);  /* slightly lighter so image shows */
  z-index: 0;
}}
/* Make the app transparent and float above overlay */
.gradio-container {{ background: transparent !important; position: relative; z-index: 1; }}
.glass-card {{
  background: rgba(255, 255, 255, 0.08);
  backdrop-filter: blur(6px);
  -webkit-backdrop-filter: blur(6px);
  border-radius: 14px;
  padding: 18px;
  border: 1px solid rgba(255, 255, 255, 0.12);
}}
"""

with gr.Blocks(css=CUSTOM_CSS) as demo:
    with gr.Column(elem_classes=["glass-card"]):
        gr.Markdown("# 🍹 AI Bartender — Type a Base + Flavor")
        with gr.Row():
            base_text = gr.Textbox(value="gin", label="Base alcohol (type any spirit, e.g., 'gin', 'white rum', 'bourbon')")
            flavor = gr.Dropdown(choices=FLAVOR_OPTIONS, value="citrus", label="Flavor")
            topk = gr.Slider(1, 10, value=3, step=1, label="Number of recommendations")
        with gr.Row():
            ex1 = gr.Button("Example: Gin + Citrus")
            ex2 = gr.Button("Example: Rum + Fruity")
            ex3 = gr.Button("Example: Mezcal + Smoky")
        out = gr.Markdown()
        gr.Button("Recommend").click(recommend, [base_text, flavor, topk], out)
        ex1.click(lambda: ("gin", "citrus", 3), outputs=[base_text, flavor, topk])
        ex2.click(lambda: ("white rum", "fruity", 3), outputs=[base_text, flavor, topk])
        ex3.click(lambda: ("mezcal", "smoky", 3), outputs=[base_text, flavor, topk])

if __name__ == "__main__":
    demo.launch()