File size: 13,030 Bytes
14b3df5
 
 
 
d52e547
 
 
 
14b3df5
d52e547
14b3df5
 
 
 
70042b3
bdc790b
de2cb80
14b3df5
 
 
 
 
 
d52e547
6c05485
14b3df5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
688bb5e
6c05485
d52e547
14b3df5
 
688bb5e
 
 
f6dbe34
688bb5e
 
 
 
 
 
 
 
f6dbe34
 
688bb5e
 
14b3df5
f6dbe34
14b3df5
688bb5e
 
 
f6dbe34
 
688bb5e
d52e547
14b3df5
688bb5e
14b3df5
688bb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6c05485
14b3df5
688bb5e
14b3df5
f6dbe34
688bb5e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f6dbe34
688bb5e
 
 
 
 
 
 
 
 
 
 
14b3df5
 
 
 
 
 
 
688bb5e
7e409b0
688bb5e
 
 
 
 
 
 
 
 
106a582
688bb5e
 
 
 
 
d52e547
14b3df5
 
 
 
 
 
 
 
 
 
 
 
 
 
6c05485
d52e547
70042b3
d52e547
14b3df5
d52e547
14b3df5
d52e547
 
6c05485
688bb5e
f6dbe34
688bb5e
 
f6dbe34
d52e547
 
106a582
 
14b3df5
 
 
d52e547
 
 
f6dbe34
d52e547
14b3df5
 
 
 
 
 
d52e547
 
106a582
d52e547
106a582
 
 
 
 
 
 
 
 
 
 
 
 
 
688bb5e
2f6e139
de2cb80
2f6e139
688bb5e
 
106a582
 
2f6e139
106a582
2f6e139
 
106a582
 
 
 
 
688bb5e
106a582
 
 
 
 
14b3df5
 
f5638f4
106a582
 
14b3df5
f5638f4
106a582
14b3df5
 
 
 
 
 
 
 
 
 
 
 
 
 
f5638f4
 
14b3df5
 
688bb5e
 
14b3df5
f5638f4
14b3df5
 
688bb5e
f5638f4
 
 
 
de2cb80
f5638f4
70042b3
 
 
 
 
 
 
 
 
 
 
 
 
 
de2cb80
 
 
 
 
 
70042b3
de2cb80
 
 
70042b3
 
de2cb80
 
70042b3
de2cb80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f5638f4
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
import os
import re
import numpy as np
import gradio as gr
from datasets import load_dataset
from sentence_transformers import SentenceTransformer

# ========================
# Config
# ========================
DATASET_ID = "motimmom/cocktails_clean_nobrand"   # <- change if needed
EMBED_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
FLAVOR_BOOST = 0.20

# Permanent background image URL (set your own here)
BACKGROUND_IMAGE_URL = "https://huggingface.co/spaces/OGOGOG/AI-Bartender/mainScreenshot 2025-06-30 at 7.13.18 PM.png"

# If dataset is private, add Space secret HF_TOKEN (read scope)
HF_READ_TOKEN = os.getenv("HF_TOKEN") or os.getenv("HUGGING_FACE_HUB_TOKEN")
load_kwargs = {}
if HF_READ_TOKEN:
    load_kwargs["token"] = HF_READ_TOKEN
    load_kwargs["use_auth_token"] = HF_READ_TOKEN

# ========================
# Base & Flavor tagging rules
# ========================
BASE_SPIRITS = {
    "vodka":    [r"\bvodka\b"],
    "gin":      [r"\bgin\b"],
    "rum":      [r"\brum\b", r"\bwhite rum\b", r"\bdark rum\b"],
    "tequila":  [r"\btequila\b"],
    "whiskey":  [r"\bwhisk(?:e|)y\b", r"\bbourbon\b", r"\bscotch\b", r"\brye\b"],
    "mezcal":   [r"\bmezcal\b"],
    "brandy":   [r"\bbrandy\b", r"\bcognac\b"],
    "vermouth": [r"\bvermouth\b"],
    "other":    [r"\btriple sec\b", r"\bliqueur\b", r"\bcointreau\b", r"\baperol\b", r"\bcampari\b"],
}
FLAVORS = {
    "citrus":      [r"lime", r"lemon", r"grapefruit", r"orange", r"\bcitrus\b"],
    "sweet":       [r"simple syrup", r"\bsugar\b", r"\bhoney\b", r"\bagave\b", r"\bmaple\b", r"\bgrenadine\b", r"\bvanilla\b", r"\bsweet\b"],
    "sour":        [r"\bsour\b", r"lemon juice", r"lime juice", r"\bacid\b"],
    "bitter":      [r"\bbitter", r"\bamaro\b", r"\bcampari\b", r"\baperol\b"],
    "smoky":       [r"\bsmoky\b", r"\bsmoked\b", r"\bmezcal\b", r"\bpeated\b"],
    "spicy":       [r"\bspicy\b", r"\bchili\b", r"\bginger\b", r"\bjalapeño\b", r"\bcayenne\b"],
    "herbal":      [r"\bmint\b", r"\bbasil\b", r"\brosemary\b", r"\bthyme\b", r"\bherb", r"\bchartreuse\b"],
    "fruity":      [r"pineapple", r"cranberr", r"strawberr", r"mango", r"passion", r"peach", r"\bfruit"],
    "creamy":      [r"\bcream\b", r"coconut cream", r"\begg white\b", r"\bcreamy\b"],
    "floral":      [r"\brose\b", r"\bviolet\b", r"\belderflower\b", r"\blavender\b", r"\bfloral\b"],
    "refreshing":  [r"soda water", r"\btonic\b", r"\bhighball\b", r"\bcollins\b", r"\bfizz\b", r"\brefreshing\b"],
    "boozy":       [r"\bstirred\b", r"\bmartini\b", r"old fashioned", r"\bboozy\b", r"\bstrong\b"],
}
FLAVOR_OPTIONS = list(FLAVORS.keys())

# ========================
# Robust extraction helpers (with measures)
# ========================
def _clean(s):
    return s.strip() if isinstance(s, str) else ""

def _norm_measure(s: str) -> str:
    if not isinstance(s, str):
        return ""
    s = re.sub(r"\s+", " ", s.strip())
    s = re.sub(r"\bml\b", "ml", s, flags=re.I)
    s = re.sub(r"\boz\b", "oz", s, flags=re.I)
    s = re.sub(r"\btsp\b", "tsp", s, flags=re.I)
    s = re.sub(r"\btbsp\b", "tbsp", s, flags=re.I)
    return s

def _join_measure_name(measure, name):
    m = _norm_measure(measure)
    n = name.strip() if isinstance(name, str) else ""
    if m and n: return f"{m} {n}"
    return n or m

def _split_ingredient_blob(s):
    if not isinstance(s, str): return []
    parts = re.split(r"[,\n;•\-–]+", s)
    out = []
    for p in parts:
        p = p.strip()
        if p:
            out.append(p)
    return out

def _from_list_of_pairs(val):
    out_disp, out_tokens = [], []
    for x in val:
        if not isinstance(x, (list, tuple)) or len(x) == 0:
            continue
        if len(x) == 1:
            name = str(x[0]).strip()
            if name:
                out_disp.append(name)
                out_tokens.append(name.lower())
            continue
        a, b = str(x[0]).strip(), str(x[1]).strip()
        if re.search(r"\d", a) and not re.search(r"\d", b):
            disp = _join_measure_name(a, b)
            out_disp.append(disp)
            out_tokens.append(b.lower())
        elif re.search(r"\d", b) and not re.search(r"\d", a):
            disp = _join_measure_name(b, a)
            out_disp.append(disp)
            out_tokens.append(a.lower())
        else:
            disp = (a + " " + b).strip()
            out_disp.append(disp)
            token = b if len(b) > len(a) else a
            out_tokens.append(token.lower())
    return out_disp, out_tokens

def _from_list_of_dicts(val):
    out_disp, out_tokens = [], []
    for x in val:
        if not isinstance(x, dict): continue
        name = None
        for nk in ["name", "ingredient", "item", "raw", "text", "strIngredient"]:
            if isinstance(x.get(nk), str) and x[nk].strip():
                name = x[nk].strip()
                break
        meas = None
        for mk in ["measure", "qty", "quantity", "amount", "unit", "Measure", "strMeasure"]:
            if isinstance(x.get(mk), str) and x[mk].strip():
                meas = x[mk].strip()
                break
        if name and meas:
            out_disp.append(_join_measure_name(meas, name))
            out_tokens.append(name.lower())
        elif name:
            out_disp.append(name)
            out_tokens.append(name.lower())
    return out_disp, out_tokens

def _ingredients_from_any(val):
    if isinstance(val, str):
        lines = _split_ingredient_blob(val)
        tokens = []
        for line in lines:
            parts = re.split(r"\s+", line)
            idx = 0
            for i, p in enumerate(parts):
                if re.search(r"[A-Za-z]", p):
                    idx = i; break
            tokens.append(" ".join(parts[idx:]).lower())
        return lines, tokens
    if isinstance(val, list) and all(isinstance(x, str) for x in val):
        disp = [x.strip() for x in val if x and x.strip()]
        tokens = [x.lower().strip() for x in disp]
        return disp, tokens
    if isinstance(val, list) and any(isinstance(x, (list, tuple)) for x in val):
        return _from_list_of_pairs(val)
    if isinstance(val, list) and any(isinstance(x, dict) for x in val):
        return _from_list_of_dicts(val)
    return [], []

def _get_title(row, cols):
    for k in ["title","name","cocktail_name","drink","Drink","strDrink"]:
        if k in cols and _clean(row.get(k)):
            return _clean(row[k])
    return "Untitled"

def _get_ingredients_with_measures(row, cols):
    if "ingredient_tokens" in cols and row.get("ingredient_tokens"):
        toks = [str(x).strip().lower() for x in row["ingredient_tokens"] if str(x).strip()]
        for mkey in ["measure_tokens","measures","measure_list"]:
            if mkey in cols and row.get(mkey) and isinstance(row[mkey], list) and len(row[mkey]) == len(toks):
                disp = []
                for m, n in zip(row[mkey], row["ingredient_tokens"]):
                    m = _norm_measure(str(m))
                    n = str(n).strip()
                    disp.append(_join_measure_name(m, n) if m else n)
                return disp, toks
        return toks, toks
    for key in ["ingredients","ingredients_raw","raw_ingredients","Raw_Ingredients","Raw Ingredients",
                "ingredient_list","ingredients_list"]:
        if key in cols and row.get(key) not in (None, "", [], {}):
            return _ingredients_from_any(row[key])
    return [], []

def tag_base(text):
    t = text.lower()
    for base, pats in BASE_SPIRITS.items():
        if any(re.search(p, t) for p in pats):
            return base
    return "other"

def tag_flavors(text):
    t = text.lower()
    tags = []
    for flv, pats in FLAVORS.items():
        if any(re.search(p, t) for p in pats):
            tags.append(flv)
    return tags

# ========================
# Load dataset & build docs
# ========================
ds = load_dataset(DATASET_ID, split="train", **load_kwargs)
cols = ds.column_names

DOCS = []
for r in ds:
    title = _get_title(r, cols)
    ing_disp, ing_tokens = _get_ingredients_with_measures(r, cols)
    ing_disp = [x for x in ing_disp if x]
    ing_tokens = [x for x in ing_tokens if x]

    fused = f"{title}\nIngredients: {', '.join(ing_tokens)}"
    DOCS.append({
        "title": title,
        "ingredients_display": ing_disp,
        "ingredients_tokens": ing_tokens,
        "text": fused,
        "base": tag_base(fused),
        "flavors": tag_flavors(fused),
    })

# ========================
# Embeddings
# ========================
encoder = SentenceTransformer(EMBED_MODEL)
doc_embs = encoder.encode(
    [d["text"] for d in DOCS],
    normalize_embeddings=True,
    convert_to_numpy=True
).astype("float32")

# ========================
# Pretty ingredient formatting
# ========================
_MEASURE_RE = re.compile(
    r"^\s*(?P<meas>(?:\d+(\.\d+)?|\d+\s*/\s*\d+|\d+\s*\d*/\d+)\s*(?:ml|oz|tsp|tbsp)?|\d+\s*(?:ml|oz|tsp|tbsp)|(?:dash|dashes|drop|drops|barspoon)s?)\b[\s\-–:]*",
    flags=re.I
)

def _split_measure_name_line(line: str):
    if not isinstance(line, str): return None, line
    m = _MEASURE_RE.match(line.strip())
    if m:
        meas = _norm_measure(m.group("meas"))
        name = line[m.end():].strip()
        return meas, name or ""
    return "", line.strip()

def _format_ingredients_markdown(lines):
    """
    Bullet points as 'Ingredient (amount)'. Strips [ and ] if present.
    """
    if not lines:
        return "—"
    formatted = []
    for ln in lines:
        ln = ln.replace("[", "").replace("]", "")
        meas, name = _split_measure_name_line(ln)
        if name and meas:
            formatted.append(f"- {name} ({meas})")
        elif name:
            formatted.append(f"- {name}")
        else:
            formatted.append(f"- {ln}")
    return "\n".join(formatted)

# ========================
# Recommendation
# ========================
def recommend(base_alcohol_text, flavor, top_k=3):
    inferred_base = tag_base(base_alcohol_text or "")
    if flavor not in FLAVOR_OPTIONS:
        return "Please choose a flavor."

    idxs = [i for i, d in enumerate(DOCS) if d["base"] == inferred_base]
    if inferred_base == "other" or not idxs:
        idxs = list(range(len(DOCS)))

    q_text = f"Base spirit: {base_alcohol_text}. Flavor: {flavor}. Cocktail recipe."
    q_emb = encoder.encode([q_text], normalize_embeddings=True, convert_to_numpy=True).astype("float32")[0]

    sims = doc_embs[idxs].dot(q_emb)  # cosine since normalized
    scored = []
    for pos, i in enumerate(idxs):
        base_score = float(sims[pos])
        score = base_score + (FLAVOR_BOOST if flavor in DOCS[i]['flavors'] else 0.0)
        scored.append((score, i))
    scored.sort(reverse=True)

    k = max(1, int(top_k))
    picks = scored[:k]
    if not picks:
        return "No matches found."

    blocks = []
    for sc, i in picks:
        d = DOCS[i]
        ing_lines = d["ingredients_display"] or d["ingredients_tokens"]
        ing_md = _format_ingredients_markdown(ing_lines)
        meta = f"**Base:** {d['base']}  |  **Flavor tags:** {', '.join(d['flavors']) or '—'}  |  **Score:** {sc:.3f}"
        blocks.append(
            f"### {d['title']}\n"
            f"{meta}\n\n"
            f"**Ingredients:**\n{ing_md}"
        )
    return "\n\n---\n\n".join(blocks)

# ========================
# Background + UI
# ========================
CUSTOM_CSS = f"""
#app-bg {{
  position: fixed;
  inset: 0;
  z-index: -1;
  background-image: url('{BACKGROUND_IMAGE_URL}');
  background-size: cover;
  background-position: center;
  filter: brightness(0.45);
}}
.gradio-container {{
  background: transparent !important;
}}
.glass-card {{
  background: rgba(255, 255, 255, 0.08);
  backdrop-filter: blur(6px);
  -webkit-backdrop-filter: blur(6px);
  border-radius: 14px;
  padding: 18px;
  border: 1px solid rgba(255, 255, 255, 0.12);
}}
"""

with gr.Blocks(css=CUSTOM_CSS) as demo:
    # Render permanent background
    gr.HTML("<div id='app-bg'></div>")

    with gr.Column(elem_classes=["glass-card"]):
        gr.Markdown("# 🍹 AI Bartender — Type a Base + Flavor")

        with gr.Row():
            base_text = gr.Textbox(value="gin", label="Base alcohol (type any spirit, e.g., 'gin', 'white rum', 'bourbon')")
            flavor = gr.Dropdown(choices=FLAVOR_OPTIONS, value="citrus", label="Flavor")
            topk = gr.Slider(1, 10, value=3, step=1, label="Number of recommendations")

        with gr.Row():
            ex1 = gr.Button("Example: Gin + Citrus")
            ex2 = gr.Button("Example: Rum + Fruity")
            ex3 = gr.Button("Example: Mezcal + Smoky")

        out = gr.Markdown()
        gr.Button("Recommend").click(recommend, [base_text, flavor, topk], out)

        # Quick-fill examples
        ex1.click(lambda: ("gin", "citrus", 3), outputs=[base_text, flavor, topk])
        ex2.click(lambda: ("white rum", "fruity", 3), outputs=[base_text, flavor, topk])
        ex3.click(lambda: ("mezcal", "smoky", 3), outputs=[base_text, flavor, topk])

if __name__ == "__main__":
    demo.launch()