Spaces:
Running
Running
readme update
Browse files
README.md
CHANGED
|
@@ -16,16 +16,16 @@ pinned: false
|
|
| 16 |
|
| 17 |
## Metric Description
|
| 18 |
|
| 19 |
-
This metrics computes the expected calibration error (ECE).
|
| 20 |
-
|
| 21 |
-
https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html
|
| 22 |
|
| 23 |
## How to Use
|
| 24 |
|
| 25 |
### Inputs
|
| 26 |
*List all input arguments in the format below*
|
| 27 |
-
- **predictions** *(float32): predictions (after softmax). They must have a shape (N,C
|
| 28 |
-
- **references** *(int64): reference for each prediction, with a shape (N,...)
|
|
|
|
| 29 |
|
| 30 |
### Output Values
|
| 31 |
|
|
@@ -50,6 +50,24 @@ print(results)
|
|
| 50 |
|
| 51 |
## Citation
|
| 52 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 53 |
```bibtex
|
| 54 |
@inproceedings{NEURIPS2019_f8c0c968,
|
| 55 |
author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu},
|
|
@@ -62,3 +80,14 @@ print(results)
|
|
| 62 |
year = {2019}
|
| 63 |
}
|
| 64 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
## Metric Description
|
| 18 |
|
| 19 |
+
This metrics computes the expected calibration error (ECE). ECE evaluates how well a model is calibrated, i.e. how well its output probabilities match the actual ground truth distribution. It measures the $$L^p$$ norm difference between a model’s posterior and the true likelihood of being correct.
|
| 20 |
+
This module directly calls the [torchmetrics package implementation](https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html), allowing to use its flexible arguments.
|
|
|
|
| 21 |
|
| 22 |
## How to Use
|
| 23 |
|
| 24 |
### Inputs
|
| 25 |
*List all input arguments in the format below*
|
| 26 |
+
- **predictions** *(float32): predictions (after softmax). They must have a shape (N,C) if multiclass, or (N,...) if binary;*
|
| 27 |
+
- **references** *(int64): reference for each prediction, with a shape (N,...);*
|
| 28 |
+
- **kwargs** *arguments to pass to the [ece](https://torchmetrics.readthedocs.io/en/stable/classification/calibration_error.html) methods.*
|
| 29 |
|
| 30 |
### Output Values
|
| 31 |
|
|
|
|
| 50 |
|
| 51 |
## Citation
|
| 52 |
|
| 53 |
+
```bibtex
|
| 54 |
+
@InProceedings{pmlr-v70-guo17a,
|
| 55 |
+
title = {On Calibration of Modern Neural Networks},
|
| 56 |
+
author = {Chuan Guo and Geoff Pleiss and Yu Sun and Kilian Q. Weinberger},
|
| 57 |
+
booktitle = {Proceedings of the 34th International Conference on Machine Learning},
|
| 58 |
+
pages = {1321--1330},
|
| 59 |
+
year = {2017},
|
| 60 |
+
editor = {Precup, Doina and Teh, Yee Whye},
|
| 61 |
+
volume = {70},
|
| 62 |
+
series = {Proceedings of Machine Learning Research},
|
| 63 |
+
month = {06--11 Aug},
|
| 64 |
+
publisher = {PMLR},
|
| 65 |
+
pdf = {http://proceedings.mlr.press/v70/guo17a/guo17a.pdf},
|
| 66 |
+
url = {https://proceedings.mlr.press/v70/guo17a.html},
|
| 67 |
+
}
|
| 68 |
+
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
```bibtex
|
| 72 |
@inproceedings{NEURIPS2019_f8c0c968,
|
| 73 |
author = {Kumar, Ananya and Liang, Percy S and Ma, Tengyu},
|
|
|
|
| 80 |
year = {2019}
|
| 81 |
}
|
| 82 |
```
|
| 83 |
+
|
| 84 |
+
```bibtex
|
| 85 |
+
@InProceedings{Nixon_2019_CVPR_Workshops,
|
| 86 |
+
author = {Nixon, Jeremy and Dusenberry, Michael W. and Zhang, Linchuan and Jerfel, Ghassen and Tran, Dustin},
|
| 87 |
+
title = {Measuring Calibration in Deep Learning},
|
| 88 |
+
booktitle = {Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) Workshops},
|
| 89 |
+
month = {June},
|
| 90 |
+
year = {2019},
|
| 91 |
+
url = {https://openaccess.thecvf.com/content_CVPRW_2019/html/Uncertainty_and_Robustness_in_Deep_Visual_Learning/Nixon_Measuring_Calibration_in_Deep_Learning_CVPRW_2019_paper.html},
|
| 92 |
+
}
|
| 93 |
+
```
|