File size: 13,701 Bytes
6880cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6324ab5
 
6880cd9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
import streamlit as st
import requests
import json
import time
from typing import Dict, Any, Optional
import io

# Page configuration
st.set_page_config(
    page_title="Book Summarizer AI",
    page_icon="πŸ“š",
    layout="wide",
    initial_sidebar_state="expanded"
)

# API configuration
API_BASE_URL = "http://localhost:8000"

def main():
    # Custom CSS for better styling
    st.markdown("""
    <style>
    .main-header {
        font-size: 3rem;
        font-weight: bold;
        text-align: center;
        color: #1f77b4;
        margin-bottom: 2rem;
    }
    .sub-header {
        font-size: 1.5rem;
        color: #666;
        text-align: center;
        margin-bottom: 2rem;
    }
    .success-box {
        background-color: #d4edda;
        border: 1px solid #c3e6cb;
        border-radius: 5px;
        padding: 1rem;
        margin: 1rem 0;
    }
    .error-box {
        background-color: #f8d7da;
        border: 1px solid #f5c6cb;
        border-radius: 5px;
        padding: 1rem;
        margin: 1rem 0;
    }
    .info-box {
        background-color: #d1ecf1;
        border: 1px solid #bee5eb;
        border-radius: 5px;
        padding: 1rem;
        margin: 1rem 0;
    }
    </style>
    """, unsafe_allow_html=True)
    
    # Header
    st.markdown('<h1 class="main-header">πŸ“š Book Summarizer AI</h1>', unsafe_allow_html=True)
    st.markdown('<p class="sub-header">Transform your PDF books into intelligent summaries using AI</p>', unsafe_allow_html=True)
    
    # Sidebar
    with st.sidebar:
        st.header("βš™οΈ Settings")
        
        # Model selection
        st.subheader("AI Model")
        try:
            models_response = requests.get(f"{API_BASE_URL}/models")
            if models_response.status_code == 200:
                models_data = models_response.json()
                models = models_data.get('models', [])
                current_model = models_data.get('current_model', '')
                
                model_names = [model['name'] for model in models]
                selected_model = st.selectbox(
                    "Choose AI Model",
                    model_names,
                    index=model_names.index(current_model) if current_model in model_names else 0
                )
                
                # Show model description
                selected_model_info = next((m for m in models if m['name'] == selected_model), None)
                if selected_model_info:
                    st.info(f"**{selected_model_info['description']}**")
            else:
                st.error("Failed to load models")
                selected_model = "facebook/bart-large-cnn"
        except Exception as e:
            st.error(f"Error loading models: {str(e)}")
            selected_model = "facebook/bart-large-cnn"
        
        # Summary settings
        st.subheader("Summary Settings")
        max_length = st.slider("Maximum Summary Length", 50, 500, 150, help="Maximum number of words in the summary")
        min_length = st.slider("Minimum Summary Length", 10, 200, 50, help="Minimum number of words in the summary")
        
        # Advanced settings
        with st.expander("Advanced Settings"):
            chunk_size = st.slider("Chunk Size", 500, 2000, 1000, help="Size of text chunks for processing")
            overlap = st.slider("Chunk Overlap", 50, 200, 100, help="Overlap between text chunks")
        
        # API status
        st.subheader("API Status")
        try:
            health_response = requests.get(f"{API_BASE_URL}/health")
            if health_response.status_code == 200:
                st.success("βœ… API Connected")
            else:
                st.error("❌ API Error")
        except:
            st.error("❌ API Unavailable")
    
    # Main content
    tab1, tab2, tab3 = st.tabs(["πŸ“– Summarize Book", "πŸ“Š Text Analysis", "ℹ️ About"])
    
    with tab1:
        st.header("πŸ“– Book Summarization")
        
        # File upload
        uploaded_file = st.file_uploader(
            "Choose a PDF book file",
            type=['pdf'],
            help="Upload a PDF file (max 50MB)"
        )
        
        if uploaded_file is not None:
            # File info
            file_size = len(uploaded_file.getvalue()) / (1024 * 1024)  # MB
            st.info(f"πŸ“„ **File:** {uploaded_file.name} ({file_size:.1f} MB)")
            
            # Validate file
            if st.button("πŸ” Validate PDF", type="secondary"):
                with st.spinner("Validating PDF..."):
                    try:
                        files = {"file": uploaded_file.getvalue()}
                        response = requests.post(f"{API_BASE_URL}/upload-pdf", files=files)
                        
                        if response.status_code == 200:
                            data = response.json()
                            st.success(f"βœ… {data['message']}")
                            
                            # Display metadata
                            metadata = data.get('metadata', {})
                            col1, col2, col3 = st.columns(3)
                            with col1:
                                st.metric("Pages", data['pages'])
                            with col2:
                                st.metric("Size", f"{data['size_mb']:.1f} MB")
                            with col3:
                                st.metric("Title", metadata.get('title', 'Unknown'))
                        else:
                            st.error(f"❌ Validation failed: {response.json().get('detail', 'Unknown error')}")
                    except Exception as e:
                        st.error(f"❌ Error: {str(e)}")
            
            # Summarize button
            if st.button("πŸš€ Generate Summary", type="primary"):
                if uploaded_file is not None:
                    with st.spinner("Processing your book..."):
                        try:
                            # Prepare request
                            files = {"file": uploaded_file.getvalue()}
                            data = {
                                "max_length": max_length,
                                "min_length": min_length,
                                "chunk_size": chunk_size,
                                "overlap": overlap,
                                "model_name": selected_model
                            }
                            
                            # Send request
                            response = requests.post(f"{API_BASE_URL}/summarize", files=files, data=data)
                            
                            if response.status_code == 200:
                                result = response.json()
                                
                                # Display success message
                                st.success("βœ… Summary generated successfully!")
                                
                                # Display statistics
                                col1, col2, col3, col4 = st.columns(4)
                                stats = result.get('statistics', {})
                                orig_stats = result.get('original_statistics', {})
                                
                                with col1:
                                    st.metric("Original Words", f"{orig_stats.get('total_words', 0):,}")
                                with col2:
                                    st.metric("Summary Words", f"{stats.get('final_summary_length', 0):,}")
                                with col3:
                                    compression = stats.get('overall_compression_ratio', 0)
                                    st.metric("Compression", f"{compression:.1%}")
                                with col4:
                                    st.metric("Chunks Processed", stats.get('total_chunks', 0))
                                
                                # Display summary
                                st.subheader("πŸ“ Generated Summary")
                                summary = result.get('summary', '')
                                st.text_area(
                                    "Summary",
                                    value=summary,
                                    height=400,
                                    disabled=True
                                )
                                
                                # Download button
                                summary_bytes = summary.encode('utf-8')
                                st.download_button(
                                    label="πŸ“₯ Download Summary",
                                    data=summary_bytes,
                                    file_name=f"{uploaded_file.name.replace('.pdf', '')}_summary.txt",
                                    mime="text/plain"
                                )
                                
                            else:
                                error_msg = response.json().get('detail', 'Unknown error')
                                st.error(f"❌ Summarization failed: {error_msg}")
                                
                        except Exception as e:
                            st.error(f"❌ Error: {str(e)}")
    
    with tab2:
        st.header("πŸ“Š Text Analysis")
        
        if uploaded_file is not None:
            if st.button("πŸ“Š Analyze Text"):
                with st.spinner("Analyzing text..."):
                    try:
                        files = {"file": uploaded_file.getvalue()}
                        response = requests.post(f"{API_BASE_URL}/extract-text", files=files)
                        
                        if response.status_code == 200:
                            data = response.json()
                            stats = data.get('statistics', {})
                            
                            # Display statistics
                            col1, col2, col3, col4 = st.columns(4)
                            
                            with col1:
                                st.metric("Total Words", f"{stats.get('total_words', 0):,}")
                            with col2:
                                st.metric("Total Sentences", f"{stats.get('total_sentences', 0):,}")
                            with col3:
                                st.metric("Avg Words/Sentence", f"{stats.get('average_words_per_sentence', 0):.1f}")
                            with col4:
                                st.metric("Reading Time", f"{stats.get('estimated_reading_time_minutes', 0):.1f} min")
                            
                            # Text preview
                            st.subheader("πŸ“„ Text Preview")
                            text_response = requests.post(f"{API_BASE_URL}/extract-text", files=files)
                            if text_response.status_code == 200:
                                text_data = text_response.json()
                                preview_text = text_data.get('text', '')[:1000] + "..." if len(text_data.get('text', '')) > 1000 else text_data.get('text', '')
                                st.text_area("First 1000 characters:", value=preview_text, height=200, disabled=True)
                        else:
                            st.error(f"❌ Analysis failed: {response.json().get('detail', 'Unknown error')}")
                    except Exception as e:
                        st.error(f"❌ Error: {str(e)}")
        else:
            st.info("πŸ“„ Please upload a PDF file to analyze its text.")
    
    with tab3:
        st.header("ℹ️ About")
        
        st.markdown("""
        ## πŸ€– Book Summarizer AI
        
        This application uses advanced AI models to automatically summarize PDF books. 
        It processes the text in chunks and generates comprehensive summaries while 
        maintaining the key information and context.
        
        ### ✨ Features
        
        - **PDF Text Extraction**: Advanced PDF processing with fallback methods
        - **AI Summarization**: State-of-the-art transformer models
        - **Configurable Settings**: Adjust summary length and processing parameters
        - **Multiple Models**: Choose from different AI models for various use cases
        - **Text Analysis**: Detailed statistics about the book content
        
        ### πŸ› οΈ Technology Stack
        
        - **Frontend**: Streamlit
        - **Backend**: FastAPI
        - **AI Models**: Hugging Face Transformers (BART, T5)
        - **PDF Processing**: PyPDF2, pdfplumber
        - **Text Processing**: NLTK
        
        ### πŸ“‹ How It Works
        
        1. **Upload**: Select a PDF book file (max 50MB)
        2. **Extract**: The system extracts and cleans text from the PDF
        3. **Chunk**: Large texts are split into manageable chunks
        4. **Summarize**: AI models process each chunk and generate summaries
        5. **Combine**: Individual summaries are combined into a final summary
        6. **Download**: Get your summary in text format
        
        ### πŸš€ Getting Started
        
        1. Make sure the API server is running (`uvicorn api.main:app --reload`)
        2. Upload a PDF book file
        3. Configure your preferred settings
        4. Click "Generate Summary" and wait for processing
        5. Download your AI-generated summary
        
        ### πŸ“ž Support
        
        For issues or questions, please check the API documentation at `/docs` 
        when the server is running.
        """)

if __name__ == "__main__":
    main()