Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,625 +1,625 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoProcessor, VoxtralForConditionalGeneration
|
| 4 |
-
from pydub import AudioSegment
|
| 5 |
-
from pydub.silence import detect_silence
|
| 6 |
-
import yt_dlp
|
| 7 |
-
import requests
|
| 8 |
-
import validators
|
| 9 |
-
from urllib.parse import urlparse
|
| 10 |
-
import subprocess
|
| 11 |
-
import os
|
| 12 |
-
import re
|
| 13 |
-
import glob
|
| 14 |
-
import spaces
|
| 15 |
-
|
| 16 |
-
### Initializations
|
| 17 |
-
|
| 18 |
-
MAX_TOKENS = 32000
|
| 19 |
-
|
| 20 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
-
print(f"*** Device: {device}")
|
| 22 |
-
model_name = 'mistralai/Voxtral-Mini-3B-2507'
|
| 23 |
-
|
| 24 |
-
processor = AutoProcessor.from_pretrained(model_name)
|
| 25 |
-
model = VoxtralForConditionalGeneration.from_pretrained(model_name,
|
| 26 |
-
torch_dtype=torch.bfloat16,
|
| 27 |
-
device_map=device)
|
| 28 |
-
# Supported languages
|
| 29 |
-
dict_languages = {"English": "en",
|
| 30 |
-
"French": "fr",
|
| 31 |
-
"German": "de",
|
| 32 |
-
"Spanish": "es",
|
| 33 |
-
"Italian": "it",
|
| 34 |
-
"Portuguese": "pt",
|
| 35 |
-
"Dutch": "nl",
|
| 36 |
-
"Hindi": "hi"}
|
| 37 |
-
|
| 38 |
-
# Whitelist of allowed MIME types for audio and video
|
| 39 |
-
ALLOWED_MIME_TYPES = {
|
| 40 |
-
# Audio
|
| 41 |
-
'audio/mpeg', 'audio/wav', 'audio/wave', 'audio/x-wav', 'audio/x-pn-wav',
|
| 42 |
-
'audio/ogg', 'audio/vorbis', 'audio/aac', 'audio/mp4', 'audio/flac',
|
| 43 |
-
'audio/x-flac', 'audio/opus', 'audio/webm',
|
| 44 |
-
# Video
|
| 45 |
-
'video/mp4', 'video/mpeg', 'video/ogg', 'video/webm', 'video/quicktime',
|
| 46 |
-
'video/x-msvideo', 'video/x-matroska'
|
| 47 |
-
}
|
| 48 |
-
|
| 49 |
-
# Maximum allowed file size (in bytes). Ex: 1 GB
|
| 50 |
-
MAX_FILE_SIZE = 1 * 1024 * 1024 * 1024 # 1 GB
|
| 51 |
-
|
| 52 |
-
# Directory where the files will be saved
|
| 53 |
-
DOWNLOAD_DIR = "downloaded_files"
|
| 54 |
-
if not os.path.exists(DOWNLOAD_DIR):
|
| 55 |
-
os.makedirs(DOWNLOAD_DIR)
|
| 56 |
-
|
| 57 |
-
MAX_LEN = 1800000 # 30 mn
|
| 58 |
-
one_second_silence = AudioSegment.silent(duration=1000)
|
| 59 |
-
|
| 60 |
-
#### Functions
|
| 61 |
-
|
| 62 |
-
@spaces.GPU
|
| 63 |
-
def chunks_creation(audio_path):
|
| 64 |
-
list_audio_path = [audio_path]
|
| 65 |
-
audio = AudioSegment.from_file(audio_path)
|
| 66 |
-
status = gr.Markdown("👍 Audio duration less than max")
|
| 67 |
-
# Input too large ?
|
| 68 |
-
if len(audio) > MAX_LEN:
|
| 69 |
-
list_audio_path = []
|
| 70 |
-
try:
|
| 71 |
-
# Create list of chunks
|
| 72 |
-
list_silent = detect_silence(audio,min_silence_len=300,
|
| 73 |
-
# silent if quieter than -14 dBFS threshold
|
| 74 |
-
silence_thresh=audio.dBFS-14, seek_step=100)
|
| 75 |
-
list_interval = [(start, stop) for start, stop in list_silent]
|
| 76 |
-
|
| 77 |
-
# Calculate speech intervals
|
| 78 |
-
list_speech = []
|
| 79 |
-
current_start = 0
|
| 80 |
-
for start, stop in list_interval:
|
| 81 |
-
if current_start < start:
|
| 82 |
-
list_interval.append((current_start, start))
|
| 83 |
-
current_start = stop
|
| 84 |
-
# Add last interval if needed
|
| 85 |
-
if current_start < len(audio):
|
| 86 |
-
list_speech.append((current_start, len(audio)))
|
| 87 |
-
|
| 88 |
-
# Determination of chunks, to fit within the maximum duration
|
| 89 |
-
list_chunks = []
|
| 90 |
-
deb_chunk, fin_chunk = 0, list_speech[0][1]
|
| 91 |
-
|
| 92 |
-
for start, end in list_speech[1:]:
|
| 93 |
-
if end - deb_chunk + one_second_silence <= MAX_LEN:
|
| 94 |
-
fin_chunk = end + one_second_silence
|
| 95 |
-
else:
|
| 96 |
-
list_chunks.append([deb_chunk, fin_chunk])
|
| 97 |
-
deb_chunk, fin_chunk = start, end
|
| 98 |
-
list_chunks.append([deb_chunk, fin_chunk+one_second_silence])
|
| 99 |
-
|
| 100 |
-
# Save chunks
|
| 101 |
-
for i, (start, stop) in enumerate(list_chunks):
|
| 102 |
-
segment = audio[start:stop]
|
| 103 |
-
segment.export(f"chunk_{i}.wav", format="wav")
|
| 104 |
-
list_audio_path.append(f"chunk_{i}.wav")
|
| 105 |
-
|
| 106 |
-
status = f"✅ **Success!** {len(list_audio_path)} chunks saved."
|
| 107 |
-
except Exception as e:
|
| 108 |
-
status = gr.Markdown(f"❌ **Unexpected error during chuncks creation:** {e}")
|
| 109 |
-
|
| 110 |
-
return list_audio_path, status
|
| 111 |
-
###
|
| 112 |
-
|
| 113 |
-
@spaces.GPU
|
| 114 |
-
def process_transcript(language: str, audio_path: str) -> str:
|
| 115 |
-
"""Process the audio file to return its transcription.
|
| 116 |
-
|
| 117 |
-
Args:
|
| 118 |
-
language: The language of the audio.
|
| 119 |
-
audio_path: The path to the audio file.
|
| 120 |
-
|
| 121 |
-
Returns:
|
| 122 |
-
The transcribed text of the audio.
|
| 123 |
-
The status of transcription : with or without chunking.
|
| 124 |
-
"""
|
| 125 |
-
result = ""
|
| 126 |
-
status = gr.Markdown()
|
| 127 |
-
|
| 128 |
-
if audio_path is None:
|
| 129 |
-
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
| 130 |
-
else:
|
| 131 |
-
id_language = dict_languages[language]
|
| 132 |
-
|
| 133 |
-
# Verification of the duration, for possible division into chunks
|
| 134 |
-
list_audio_path, status = chunks_creation(audio_path)
|
| 135 |
-
|
| 136 |
-
# Transcription process
|
| 137 |
-
try:
|
| 138 |
-
for path in list_audio_path:
|
| 139 |
-
inputs = processor.apply_transcrition_request(language=id_language,
|
| 140 |
-
audio=path, model_id=model_name)
|
| 141 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 142 |
-
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
| 143 |
-
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:],
|
| 144 |
-
skip_special_tokens=True)
|
| 145 |
-
result += decoded_outputs[0]
|
| 146 |
-
status = "✅ **Success!** Transcription done."
|
| 147 |
-
except Exception as e:
|
| 148 |
-
status = gr.Markdown(f"❌ **Unexpected error during transcription:** {e}")
|
| 149 |
-
|
| 150 |
-
return result, status
|
| 151 |
-
###
|
| 152 |
-
|
| 153 |
-
@spaces.GPU
|
| 154 |
-
def process_translate(language: str, audio_path: str) -> str:
|
| 155 |
-
result = ""
|
| 156 |
-
status = gr.Markdown()
|
| 157 |
-
|
| 158 |
-
if audio_path is None:
|
| 159 |
-
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
| 160 |
-
else:
|
| 161 |
-
try:
|
| 162 |
-
conversation = [
|
| 163 |
-
{
|
| 164 |
-
"role": "user",
|
| 165 |
-
"content": [
|
| 166 |
-
{
|
| 167 |
-
"type": "audio",
|
| 168 |
-
"path": audio_path,
|
| 169 |
-
},
|
| 170 |
-
{"type": "text", "text": "Translate this in "+language},
|
| 171 |
-
],
|
| 172 |
-
}
|
| 173 |
-
]
|
| 174 |
-
|
| 175 |
-
inputs = processor.apply_chat_template(conversation)
|
| 176 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 177 |
-
|
| 178 |
-
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
| 179 |
-
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 180 |
-
result = decoded_outputs[0]
|
| 181 |
-
status = "✅ **Success!** Translation done."
|
| 182 |
-
except Exception as e:
|
| 183 |
-
status = gr.Markdown(f"❌ **Unexpected error during translation:** {e}")
|
| 184 |
-
|
| 185 |
-
return result, status
|
| 186 |
-
###
|
| 187 |
-
|
| 188 |
-
@spaces.GPU
|
| 189 |
-
def process_chat(question: str, audio_path: str) -> str:
|
| 190 |
-
result = ""
|
| 191 |
-
status = gr.Markdown()
|
| 192 |
-
|
| 193 |
-
if audio_path is None:
|
| 194 |
-
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
| 195 |
-
else:
|
| 196 |
-
try:
|
| 197 |
-
conversation = [
|
| 198 |
-
{
|
| 199 |
-
"role": "user",
|
| 200 |
-
"content": [
|
| 201 |
-
{
|
| 202 |
-
"type": "audio",
|
| 203 |
-
"path": audio_path,
|
| 204 |
-
},
|
| 205 |
-
{"type": "text", "text": question},
|
| 206 |
-
],
|
| 207 |
-
}
|
| 208 |
-
]
|
| 209 |
-
|
| 210 |
-
inputs = processor.apply_chat_template(conversation)
|
| 211 |
-
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 212 |
-
|
| 213 |
-
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 214 |
-
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 215 |
-
|
| 216 |
-
result = decoded_outputs[0]
|
| 217 |
-
status = "✅ **Success!** Translation done."
|
| 218 |
-
except Exception as e:
|
| 219 |
-
status = gr.Markdown(f"❌ **Unexpected error during translation:** {e}")
|
| 220 |
-
|
| 221 |
-
return result, status
|
| 222 |
-
###
|
| 223 |
-
|
| 224 |
-
def disable_buttons():
|
| 225 |
-
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
| 226 |
-
|
| 227 |
-
def enable_buttons():
|
| 228 |
-
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
| 229 |
-
###
|
| 230 |
-
|
| 231 |
-
def clear_audio():
|
| 232 |
-
return None, None, None, None
|
| 233 |
-
###
|
| 234 |
-
|
| 235 |
-
@spaces.GPU
|
| 236 |
-
def voice_extract_demucs():
|
| 237 |
-
"""
|
| 238 |
-
Returns the path of the voice extracted file.
|
| 239 |
-
"""
|
| 240 |
-
try:
|
| 241 |
-
cmd = [
|
| 242 |
-
"demucs",
|
| 243 |
-
"--two-stems=vocals",
|
| 244 |
-
"--out", "demucs",
|
| 245 |
-
"audio_file.wav"
|
| 246 |
-
]
|
| 247 |
-
subprocess.run(cmd, check=True)
|
| 248 |
-
voice_path = os.path.join("demucs", "htdemucs", "audio_file", "vocals.wav")
|
| 249 |
-
success_message = "✅ **Success!** Voice extracted."
|
| 250 |
-
return voice_path, voice_path, gr.Markdown(success_message)
|
| 251 |
-
except Exception as e:
|
| 252 |
-
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
| 253 |
-
###
|
| 254 |
-
|
| 255 |
-
def secure_download_from_url(url: str):
|
| 256 |
-
"""
|
| 257 |
-
Validates a URL and downloads the file if it is an authorized media.
|
| 258 |
-
Returns the path of the downloaded file or an error message.
|
| 259 |
-
"""
|
| 260 |
-
# Step 1: Validate the URL format
|
| 261 |
-
if not validators.url(url):
|
| 262 |
-
return None, None, gr.Markdown("❌ **Error:** The provided URL is invalid.")
|
| 263 |
-
|
| 264 |
-
try:
|
| 265 |
-
# Step 2: Send a HEAD request to check the headers without downloading the content
|
| 266 |
-
# allow_redirects=True to follow redirects to the final file location.
|
| 267 |
-
# timeout to avoid blocking requests.
|
| 268 |
-
response = requests.head(url, allow_redirects=True, timeout=10)
|
| 269 |
-
|
| 270 |
-
# Check if the request was successful (status code 2xx)
|
| 271 |
-
response.raise_for_status()
|
| 272 |
-
|
| 273 |
-
# Step 3: Validate the content type (MIME type)
|
| 274 |
-
content_type = response.headers.get('Content-Type', '').split(';')[0].strip()
|
| 275 |
-
if content_type not in ALLOWED_MIME_TYPES:
|
| 276 |
-
error_message = (
|
| 277 |
-
f"❌ **Error:** The file type is not allowed.\n"
|
| 278 |
-
f" - **Type detected:** `{content_type}`\n"
|
| 279 |
-
f" - **Allowed types:** Audio and Video only."
|
| 280 |
-
)
|
| 281 |
-
return None, None, gr.Markdown(error_message)
|
| 282 |
-
|
| 283 |
-
# Step 4: Validate the file size
|
| 284 |
-
content_length = response.headers.get('Content-Length')
|
| 285 |
-
if content_length and int(content_length) > MAX_FILE_SIZE:
|
| 286 |
-
error_message = (
|
| 287 |
-
f"❌ **Error:** The file is too large.\n"
|
| 288 |
-
f" - **File size:** {int(content_length) / 1024 / 1024:.2f} MB\n"
|
| 289 |
-
f" - **Maximum allowed size:** {MAX_FILE_SIZE / 1024 / 1024:.2f} MB"
|
| 290 |
-
)
|
| 291 |
-
return None, None, gr.Markdown(error_message)
|
| 292 |
-
|
| 293 |
-
# Step 5: Secure streaming download
|
| 294 |
-
with requests.get(url, stream=True, timeout=20) as r:
|
| 295 |
-
r.raise_for_status()
|
| 296 |
-
|
| 297 |
-
# Extract the file name from the URL
|
| 298 |
-
parsed_url = urlparse(url)
|
| 299 |
-
filename = os.path.basename(parsed_url.path)
|
| 300 |
-
if not filename: # Si l'URL se termine par un '/'
|
| 301 |
-
filename = "downloaded_media_file"
|
| 302 |
-
|
| 303 |
-
filepath = os.path.join(DOWNLOAD_DIR, filename)
|
| 304 |
-
|
| 305 |
-
# --- Step 6: Download the audio ---
|
| 306 |
-
# Write the file in chunks to avoid overloading memory
|
| 307 |
-
with open(filepath, 'wb') as f:
|
| 308 |
-
downloaded_size = 0
|
| 309 |
-
for chunk in r.iter_content(chunk_size=8192):
|
| 310 |
-
downloaded_size += len(chunk)
|
| 311 |
-
if downloaded_size > MAX_FILE_SIZE:
|
| 312 |
-
os.remove(filepath) # Supprimer le fichier partiel
|
| 313 |
-
return None, None, gr.Markdown("❌ **Error:** The file exceeds the maximum allowed size during download.")
|
| 314 |
-
f.write(chunk)
|
| 315 |
-
|
| 316 |
-
# --- Step 7: Convert to WAV using Pydub ---
|
| 317 |
-
audio_file = AudioSegment.from_file(filepath)
|
| 318 |
-
file_handle = audio_file.export("audio_file.wav", format="wav")
|
| 319 |
-
|
| 320 |
-
# --- Step 8: Clean up ---
|
| 321 |
-
try:
|
| 322 |
-
files = glob.glob(DOWNLOAD_DIR)
|
| 323 |
-
for f in files:
|
| 324 |
-
os.remove(f)
|
| 325 |
-
except:
|
| 326 |
-
pass
|
| 327 |
-
|
| 328 |
-
success_message = (
|
| 329 |
-
f"✅ **Success!** File downloaded and saved."
|
| 330 |
-
)
|
| 331 |
-
|
| 332 |
-
# Returns the file path and a success message.
|
| 333 |
-
return "audio_file.wav", "audio_file.wav", gr.Markdown(success_message)
|
| 334 |
-
|
| 335 |
-
except requests.exceptions.RequestException as e:
|
| 336 |
-
# Handle network errors (timeout, DNS, connection refused, etc.)
|
| 337 |
-
return None, None, gr.Markdown(f"❌ **Network error:** Unable to reach URL. Details: {e}")
|
| 338 |
-
except Exception as e:
|
| 339 |
-
# Handle Other potential errors
|
| 340 |
-
return None, None, gr.Markdown(f"❌ **Unexpected error:** {e}")
|
| 341 |
-
###
|
| 342 |
-
|
| 343 |
-
def secure_download_youtube_audio(url: str):
|
| 344 |
-
"""
|
| 345 |
-
Returns the path of the downloaded file or an error message.
|
| 346 |
-
"""
|
| 347 |
-
# --- Step 1: Validate URL format with Regex ---
|
| 348 |
-
youtube_regex = re.compile(
|
| 349 |
-
r'^(https?://)?(www\.)?(youtube|youtu|youtube-nocookie)\.(com|be)/'
|
| 350 |
-
r'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})')
|
| 351 |
-
if not youtube_regex.match(url):
|
| 352 |
-
return None, None, gr.Markdown("❌ **Error:** The URL '{url}' does not appear to be a valid YouTube URL.")
|
| 353 |
-
|
| 354 |
-
try:
|
| 355 |
-
# --- Step 2: Check video availability ---
|
| 356 |
-
ydl_info_opts = {'quiet': True, 'skip_download': True}
|
| 357 |
-
try:
|
| 358 |
-
with yt_dlp.YoutubeDL(ydl_info_opts) as ydl:
|
| 359 |
-
info = ydl.extract_info(url, download=False)
|
| 360 |
-
except yt_dlp.utils.DownloadError as e:
|
| 361 |
-
return None, None, gr.Markdown(f"❌ **Error:** The video at URL '{url}' is unavailable ({str(e)})")
|
| 362 |
-
|
| 363 |
-
# --- Step 3: Select best audio format ---
|
| 364 |
-
formats = [f for f in info['formats'] if f.get('acodec') != 'none']
|
| 365 |
-
if not formats:
|
| 366 |
-
return None, None, gr.Markdown("❌ **Error:** No audio-only stream was found for this video.")
|
| 367 |
-
|
| 368 |
-
formats.sort(key=lambda f: f.get('abr') or 0, reverse=True)
|
| 369 |
-
best_audio_format = formats[0]
|
| 370 |
-
|
| 371 |
-
# --- Step 4: Check file size BEFORE downloading ---
|
| 372 |
-
filesize = best_audio_format.get('filesize') or best_audio_format.get('filesize_approx')
|
| 373 |
-
if filesize is None:
|
| 374 |
-
print("Could not determine file size before downloading.")
|
| 375 |
-
filesize = 1
|
| 376 |
-
|
| 377 |
-
if filesize > MAX_FILE_SIZE:
|
| 378 |
-
return None, None, gr.Markdown(
|
| 379 |
-
f"❌ **Error:** The file is too large.\n"
|
| 380 |
-
f" - **File size:** {filesize / 1024 / 1024:.2f} MB\n"
|
| 381 |
-
f" - **Maximum allowed size:** {MAX_FILE_SIZE / 1024 / 1024:.2f} MB"
|
| 382 |
-
)
|
| 383 |
-
|
| 384 |
-
# --- Step 5: Download & convert directly to WAV ---
|
| 385 |
-
ydl_opts = {
|
| 386 |
-
'quiet': True,
|
| 387 |
-
'format': f"{best_audio_format['format_id']}",
|
| 388 |
-
'outtmpl': "audio_file", # will be replaced by ffmpeg output
|
| 389 |
-
'postprocessors': [{
|
| 390 |
-
'key': 'FFmpegExtractAudio',
|
| 391 |
-
'preferredcodec': 'wav',
|
| 392 |
-
'preferredquality': '192',
|
| 393 |
-
}],
|
| 394 |
-
}
|
| 395 |
-
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 396 |
-
ydl.download([url])
|
| 397 |
-
|
| 398 |
-
success_message = "✅ **Success!** Audio extracted and saved."
|
| 399 |
-
return "audio_file.wav", "audio_file.wav", gr.Markdown(success_message)
|
| 400 |
-
|
| 401 |
-
except FileNotFoundError:
|
| 402 |
-
return None, None, gr.Markdown("❌ **Error:** FFmpeg not found. Please ensure it is installed and in your system's PATH.")
|
| 403 |
-
except Exception as e:
|
| 404 |
-
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
| 405 |
-
###
|
| 406 |
-
|
| 407 |
-
def voice_extract_demucs():
|
| 408 |
-
"""
|
| 409 |
-
Returns the path of the voice extracted file.
|
| 410 |
-
"""
|
| 411 |
-
try:
|
| 412 |
-
cmd = [
|
| 413 |
-
"demucs",
|
| 414 |
-
"--two-stems=vocals",
|
| 415 |
-
"--out", "demucs",
|
| 416 |
-
"audio_file.wav"
|
| 417 |
-
]
|
| 418 |
-
subprocess.run(cmd, check=True)
|
| 419 |
-
voice_path = os.path.join("demucs", "htdemucs", "audio_file", "vocals.wav")
|
| 420 |
-
success_message = "✅ **Success!** Voice extracted."
|
| 421 |
-
return voice_path, voice_path, gr.Markdown(success_message)
|
| 422 |
-
except Exception as e:
|
| 423 |
-
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
| 424 |
-
###
|
| 425 |
-
|
| 426 |
-
def clear_audio():
|
| 427 |
-
return None, None, None, None
|
| 428 |
-
###
|
| 429 |
-
|
| 430 |
-
|
| 431 |
-
|
| 432 |
-
#### Gradio interface
|
| 433 |
-
with gr.Blocks(title="Voxtral") as voxtral:
|
| 434 |
-
with gr.Row():
|
| 435 |
-
gr.Markdown("# **Voxtral Mini Evaluation**")
|
| 436 |
-
|
| 437 |
-
with gr.Accordion("🔎 More on Voxtral", open=False):
|
| 438 |
-
gr.Markdown("""## **Key Features:**
|
| 439 |
-
|
| 440 |
-
#### Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
|
| 441 |
-
##### - **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
|
| 442 |
-
##### - **Long-form context**: With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
|
| 443 |
-
##### - **Built-in Q&A and summarization**: Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
|
| 444 |
-
##### - **Natively multilingual**: Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
|
| 445 |
-
##### - **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
|
| 446 |
-
##### - **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Ministral-3B""")
|
| 447 |
-
|
| 448 |
-
gr.Markdown("""#### Voxtral Mini is an enhancement of **Ministral 3B**, incorporating state-of-the-art audio input \
|
| 449 |
-
capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and \
|
| 450 |
-
audio understanding. Available languages: English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian.""")
|
| 451 |
-
|
| 452 |
-
gr.Markdown("### **1.Choose the audio:**")
|
| 453 |
-
sel_audio = gr.State()
|
| 454 |
-
with gr.Row():
|
| 455 |
-
with gr.Tabs():
|
| 456 |
-
with gr.Tab("From record or file upload"):
|
| 457 |
-
gr.Markdown("### **Upload an audio file, record via microphone, or select a demo file:**")
|
| 458 |
-
gr.Markdown("### *(Voxtral handles audios up to 30 minutes for transcription; if longer, it will be cut into chunks)*")
|
| 459 |
-
sel_audio1 = gr.Audio(sources=["
|
| 460 |
-
label="Set an audio file to process it:")
|
| 461 |
-
example1 = [["mapo_tofu.mp3"]]
|
| 462 |
-
gr.Examples(
|
| 463 |
-
examples=example1,
|
| 464 |
-
inputs=sel_audio1,
|
| 465 |
-
outputs=None,
|
| 466 |
-
fn=None,
|
| 467 |
-
cache_examples=False,
|
| 468 |
-
run_on_click=False
|
| 469 |
-
)
|
| 470 |
-
status_output1 = gr.Markdown()
|
| 471 |
-
with gr.Row():
|
| 472 |
-
voice_button1 = gr.Button("Extract voice (if noisy environment)")
|
| 473 |
-
voice_button1.click(
|
| 474 |
-
fn=voice_extract_demucs,
|
| 475 |
-
outputs=[sel_audio, sel_audio1, status_output1])
|
| 476 |
-
clear_audio1 = gr.Button("Clear audio")
|
| 477 |
-
clear_audio1.click(
|
| 478 |
-
fn=clear_audio,
|
| 479 |
-
outputs=[sel_audio, sel_audio, sel_audio1, status_output1])
|
| 480 |
-
|
| 481 |
-
with gr.Tab("From file url (audio or video file)"):
|
| 482 |
-
gr.Markdown("### **Enter the url of the file (mp3, wav, mp4, ...):**")
|
| 483 |
-
url_input2 = gr.Textbox(label="URL (MP3 or MP4 file)",
|
| 484 |
-
placeholder="https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4")
|
| 485 |
-
example2 = [["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4"]]
|
| 486 |
-
gr.Examples(
|
| 487 |
-
examples=example2,
|
| 488 |
-
inputs=url_input2,
|
| 489 |
-
outputs=None,
|
| 490 |
-
fn=None,
|
| 491 |
-
cache_examples=False,
|
| 492 |
-
run_on_click=False
|
| 493 |
-
)
|
| 494 |
-
download_button2 = gr.Button("Check and upload", variant="primary")
|
| 495 |
-
input_audio2 = gr.Audio()
|
| 496 |
-
status_output2 = gr.Markdown()
|
| 497 |
-
download_button2.click(
|
| 498 |
-
fn=secure_download_from_url,
|
| 499 |
-
inputs=url_input2,
|
| 500 |
-
outputs=[input_audio2, sel_audio, status_output2]
|
| 501 |
-
)
|
| 502 |
-
with gr.Row():
|
| 503 |
-
voice_button2 = gr.Button("Extract voice (if noisy environment)")
|
| 504 |
-
voice_button2.click(
|
| 505 |
-
fn=voice_extract_demucs,
|
| 506 |
-
outputs=[input_audio2, sel_audio, status_output2])
|
| 507 |
-
clear_audio1 = gr.Button("Clear audio")
|
| 508 |
-
clear_audio1.click(
|
| 509 |
-
fn=clear_audio,
|
| 510 |
-
outputs=[sel_audio, url_input2, input_audio2, status_output2])
|
| 511 |
-
|
| 512 |
-
with gr.Tab("From Youtube url:"):
|
| 513 |
-
gr.Markdown("### **Enter the url of the Youtube video:**")
|
| 514 |
-
url_input3 = gr.Textbox(label="Youtube url",
|
| 515 |
-
placeholder="https://www.youtube.com/...")
|
| 516 |
-
download_button3 = gr.Button("Check and upload", variant="primary")
|
| 517 |
-
input_audio3 = gr.Audio()
|
| 518 |
-
status_output3 = gr.Markdown()
|
| 519 |
-
download_button3.click(
|
| 520 |
-
fn=secure_download_youtube_audio,
|
| 521 |
-
inputs=url_input3,
|
| 522 |
-
outputs=[input_audio3, sel_audio, status_output3]
|
| 523 |
-
)
|
| 524 |
-
with gr.Row():
|
| 525 |
-
voice_button3 = gr.Button("Extract voice (if noisy environment)")
|
| 526 |
-
voice_button3.click(
|
| 527 |
-
fn=voice_extract_demucs,
|
| 528 |
-
outputs=[input_audio3, sel_audio, status_output3])
|
| 529 |
-
clear_audio1 = gr.Button("Clear audio")
|
| 530 |
-
clear_audio1.click(
|
| 531 |
-
fn=clear_audio,
|
| 532 |
-
outputs=[sel_audio, url_input3, input_audio3, status_output3])
|
| 533 |
-
|
| 534 |
-
with gr.Row():
|
| 535 |
-
gr.Markdown("### **2. Choose one of theese tasks:**")
|
| 536 |
-
|
| 537 |
-
with gr.Row():
|
| 538 |
-
with gr.Column():
|
| 539 |
-
with gr.Accordion("📝 Transcription", open=True):
|
| 540 |
-
sel_language = gr.Dropdown(
|
| 541 |
-
choices=list(dict_languages.keys()),
|
| 542 |
-
value="English",
|
| 543 |
-
label="Select the language of the audio file:"
|
| 544 |
-
)
|
| 545 |
-
submit_transcript = gr.Button("Extract transcription", variant="primary")
|
| 546 |
-
text_transcript = gr.Textbox(label="💬 Generated transcription", lines=10)
|
| 547 |
-
status_transcript = gr.Markdown()
|
| 548 |
-
|
| 549 |
-
with gr.Column():
|
| 550 |
-
with gr.Accordion("🔁 Translation", open=True):
|
| 551 |
-
list_language = list(dict_languages.keys())
|
| 552 |
-
list_language.pop(list_language.index(sel_language.value)) # Fix: Access the value of the dropdown
|
| 553 |
-
sel_translate_language = gr.Dropdown(
|
| 554 |
-
choices=list(dict_languages.keys()),
|
| 555 |
-
value="English",
|
| 556 |
-
label="Select the language for translation:"
|
| 557 |
-
)
|
| 558 |
-
submit_translate = gr.Button("Translate audio file", variant="primary")
|
| 559 |
-
text_translate = gr.Textbox(label="💬 Generated translation", lines=10)
|
| 560 |
-
status_translate = gr.Markdown()
|
| 561 |
-
|
| 562 |
-
with gr.Column():
|
| 563 |
-
with gr.Accordion("🤖 Ask audio file", open=True):
|
| 564 |
-
question_chat = gr.Textbox(label="Enter your question about audio file:", placeholder="Enter your question about audio file")
|
| 565 |
-
submit_chat = gr.Button("Ask audio file", variant="primary")
|
| 566 |
-
example_chat = [["What is the subject of this audio file?"], ["Quels sont les ingrédients ?"]]
|
| 567 |
-
gr.Examples(
|
| 568 |
-
examples=example_chat,
|
| 569 |
-
inputs=question_chat,
|
| 570 |
-
outputs=None,
|
| 571 |
-
fn=None,
|
| 572 |
-
cache_examples=False,
|
| 573 |
-
run_on_click=False
|
| 574 |
-
)
|
| 575 |
-
text_chat = gr.Textbox(label="💬 Model answer", lines=10)
|
| 576 |
-
status_chat = gr.Markdown()
|
| 577 |
-
|
| 578 |
-
### Processing
|
| 579 |
-
|
| 580 |
-
# Transcription
|
| 581 |
-
submit_transcript.click(
|
| 582 |
-
disable_buttons,
|
| 583 |
-
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 584 |
-
trigger_mode="once",
|
| 585 |
-
).then(
|
| 586 |
-
fn=process_transcript,
|
| 587 |
-
inputs=[sel_language, sel_audio],
|
| 588 |
-
outputs=[text_transcript, status_transcript]
|
| 589 |
-
).then(
|
| 590 |
-
enable_buttons,
|
| 591 |
-
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 592 |
-
)
|
| 593 |
-
|
| 594 |
-
# Translation
|
| 595 |
-
submit_translate.click(
|
| 596 |
-
disable_buttons,
|
| 597 |
-
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 598 |
-
trigger_mode="once",
|
| 599 |
-
).then(
|
| 600 |
-
fn=process_translate,
|
| 601 |
-
inputs=[sel_translate_language, sel_audio],
|
| 602 |
-
outputs=[text_translate, status_translate]
|
| 603 |
-
).then(
|
| 604 |
-
enable_buttons,
|
| 605 |
-
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 606 |
-
)
|
| 607 |
-
|
| 608 |
-
# Chat
|
| 609 |
-
submit_chat.click(
|
| 610 |
-
disable_buttons,
|
| 611 |
-
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 612 |
-
trigger_mode="once",
|
| 613 |
-
).then(
|
| 614 |
-
fn=process_chat,
|
| 615 |
-
inputs=[question_chat, sel_audio],
|
| 616 |
-
outputs=[text_chat, status_chat]
|
| 617 |
-
).then(
|
| 618 |
-
enable_buttons,
|
| 619 |
-
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 620 |
-
)
|
| 621 |
-
|
| 622 |
-
### Launch the app
|
| 623 |
-
|
| 624 |
-
if __name__ == "__main__":
|
| 625 |
-
voxtral.queue().launch(debug=True)
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoProcessor, VoxtralForConditionalGeneration
|
| 4 |
+
from pydub import AudioSegment
|
| 5 |
+
from pydub.silence import detect_silence
|
| 6 |
+
import yt_dlp
|
| 7 |
+
import requests
|
| 8 |
+
import validators
|
| 9 |
+
from urllib.parse import urlparse
|
| 10 |
+
import subprocess
|
| 11 |
+
import os
|
| 12 |
+
import re
|
| 13 |
+
import glob
|
| 14 |
+
import spaces
|
| 15 |
+
|
| 16 |
+
### Initializations
|
| 17 |
+
|
| 18 |
+
MAX_TOKENS = 32000
|
| 19 |
+
|
| 20 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 21 |
+
print(f"*** Device: {device}")
|
| 22 |
+
model_name = 'mistralai/Voxtral-Mini-3B-2507'
|
| 23 |
+
|
| 24 |
+
processor = AutoProcessor.from_pretrained(model_name)
|
| 25 |
+
model = VoxtralForConditionalGeneration.from_pretrained(model_name,
|
| 26 |
+
torch_dtype=torch.bfloat16,
|
| 27 |
+
device_map=device)
|
| 28 |
+
# Supported languages
|
| 29 |
+
dict_languages = {"English": "en",
|
| 30 |
+
"French": "fr",
|
| 31 |
+
"German": "de",
|
| 32 |
+
"Spanish": "es",
|
| 33 |
+
"Italian": "it",
|
| 34 |
+
"Portuguese": "pt",
|
| 35 |
+
"Dutch": "nl",
|
| 36 |
+
"Hindi": "hi"}
|
| 37 |
+
|
| 38 |
+
# Whitelist of allowed MIME types for audio and video
|
| 39 |
+
ALLOWED_MIME_TYPES = {
|
| 40 |
+
# Audio
|
| 41 |
+
'audio/mpeg', 'audio/wav', 'audio/wave', 'audio/x-wav', 'audio/x-pn-wav',
|
| 42 |
+
'audio/ogg', 'audio/vorbis', 'audio/aac', 'audio/mp4', 'audio/flac',
|
| 43 |
+
'audio/x-flac', 'audio/opus', 'audio/webm',
|
| 44 |
+
# Video
|
| 45 |
+
'video/mp4', 'video/mpeg', 'video/ogg', 'video/webm', 'video/quicktime',
|
| 46 |
+
'video/x-msvideo', 'video/x-matroska'
|
| 47 |
+
}
|
| 48 |
+
|
| 49 |
+
# Maximum allowed file size (in bytes). Ex: 1 GB
|
| 50 |
+
MAX_FILE_SIZE = 1 * 1024 * 1024 * 1024 # 1 GB
|
| 51 |
+
|
| 52 |
+
# Directory where the files will be saved
|
| 53 |
+
DOWNLOAD_DIR = "downloaded_files"
|
| 54 |
+
if not os.path.exists(DOWNLOAD_DIR):
|
| 55 |
+
os.makedirs(DOWNLOAD_DIR)
|
| 56 |
+
|
| 57 |
+
MAX_LEN = 1800000 # 30 mn
|
| 58 |
+
one_second_silence = AudioSegment.silent(duration=1000)
|
| 59 |
+
|
| 60 |
+
#### Functions
|
| 61 |
+
|
| 62 |
+
@spaces.GPU
|
| 63 |
+
def chunks_creation(audio_path):
|
| 64 |
+
list_audio_path = [audio_path]
|
| 65 |
+
audio = AudioSegment.from_file(audio_path)
|
| 66 |
+
status = gr.Markdown("👍 Audio duration less than max")
|
| 67 |
+
# Input too large ?
|
| 68 |
+
if len(audio) > MAX_LEN:
|
| 69 |
+
list_audio_path = []
|
| 70 |
+
try:
|
| 71 |
+
# Create list of chunks
|
| 72 |
+
list_silent = detect_silence(audio,min_silence_len=300,
|
| 73 |
+
# silent if quieter than -14 dBFS threshold
|
| 74 |
+
silence_thresh=audio.dBFS-14, seek_step=100)
|
| 75 |
+
list_interval = [(start, stop) for start, stop in list_silent]
|
| 76 |
+
|
| 77 |
+
# Calculate speech intervals
|
| 78 |
+
list_speech = []
|
| 79 |
+
current_start = 0
|
| 80 |
+
for start, stop in list_interval:
|
| 81 |
+
if current_start < start:
|
| 82 |
+
list_interval.append((current_start, start))
|
| 83 |
+
current_start = stop
|
| 84 |
+
# Add last interval if needed
|
| 85 |
+
if current_start < len(audio):
|
| 86 |
+
list_speech.append((current_start, len(audio)))
|
| 87 |
+
|
| 88 |
+
# Determination of chunks, to fit within the maximum duration
|
| 89 |
+
list_chunks = []
|
| 90 |
+
deb_chunk, fin_chunk = 0, list_speech[0][1]
|
| 91 |
+
|
| 92 |
+
for start, end in list_speech[1:]:
|
| 93 |
+
if end - deb_chunk + one_second_silence <= MAX_LEN:
|
| 94 |
+
fin_chunk = end + one_second_silence
|
| 95 |
+
else:
|
| 96 |
+
list_chunks.append([deb_chunk, fin_chunk])
|
| 97 |
+
deb_chunk, fin_chunk = start, end
|
| 98 |
+
list_chunks.append([deb_chunk, fin_chunk+one_second_silence])
|
| 99 |
+
|
| 100 |
+
# Save chunks
|
| 101 |
+
for i, (start, stop) in enumerate(list_chunks):
|
| 102 |
+
segment = audio[start:stop]
|
| 103 |
+
segment.export(f"chunk_{i}.wav", format="wav")
|
| 104 |
+
list_audio_path.append(f"chunk_{i}.wav")
|
| 105 |
+
|
| 106 |
+
status = f"✅ **Success!** {len(list_audio_path)} chunks saved."
|
| 107 |
+
except Exception as e:
|
| 108 |
+
status = gr.Markdown(f"❌ **Unexpected error during chuncks creation:** {e}")
|
| 109 |
+
|
| 110 |
+
return list_audio_path, status
|
| 111 |
+
###
|
| 112 |
+
|
| 113 |
+
@spaces.GPU
|
| 114 |
+
def process_transcript(language: str, audio_path: str) -> str:
|
| 115 |
+
"""Process the audio file to return its transcription.
|
| 116 |
+
|
| 117 |
+
Args:
|
| 118 |
+
language: The language of the audio.
|
| 119 |
+
audio_path: The path to the audio file.
|
| 120 |
+
|
| 121 |
+
Returns:
|
| 122 |
+
The transcribed text of the audio.
|
| 123 |
+
The status of transcription : with or without chunking.
|
| 124 |
+
"""
|
| 125 |
+
result = ""
|
| 126 |
+
status = gr.Markdown()
|
| 127 |
+
|
| 128 |
+
if audio_path is None:
|
| 129 |
+
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
| 130 |
+
else:
|
| 131 |
+
id_language = dict_languages[language]
|
| 132 |
+
|
| 133 |
+
# Verification of the duration, for possible division into chunks
|
| 134 |
+
list_audio_path, status = chunks_creation(audio_path)
|
| 135 |
+
|
| 136 |
+
# Transcription process
|
| 137 |
+
try:
|
| 138 |
+
for path in list_audio_path:
|
| 139 |
+
inputs = processor.apply_transcrition_request(language=id_language,
|
| 140 |
+
audio=path, model_id=model_name)
|
| 141 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 142 |
+
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
| 143 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:],
|
| 144 |
+
skip_special_tokens=True)
|
| 145 |
+
result += decoded_outputs[0]
|
| 146 |
+
status = "✅ **Success!** Transcription done."
|
| 147 |
+
except Exception as e:
|
| 148 |
+
status = gr.Markdown(f"❌ **Unexpected error during transcription:** {e}")
|
| 149 |
+
|
| 150 |
+
return result, status
|
| 151 |
+
###
|
| 152 |
+
|
| 153 |
+
@spaces.GPU
|
| 154 |
+
def process_translate(language: str, audio_path: str) -> str:
|
| 155 |
+
result = ""
|
| 156 |
+
status = gr.Markdown()
|
| 157 |
+
|
| 158 |
+
if audio_path is None:
|
| 159 |
+
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
| 160 |
+
else:
|
| 161 |
+
try:
|
| 162 |
+
conversation = [
|
| 163 |
+
{
|
| 164 |
+
"role": "user",
|
| 165 |
+
"content": [
|
| 166 |
+
{
|
| 167 |
+
"type": "audio",
|
| 168 |
+
"path": audio_path,
|
| 169 |
+
},
|
| 170 |
+
{"type": "text", "text": "Translate this in "+language},
|
| 171 |
+
],
|
| 172 |
+
}
|
| 173 |
+
]
|
| 174 |
+
|
| 175 |
+
inputs = processor.apply_chat_template(conversation)
|
| 176 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 177 |
+
|
| 178 |
+
outputs = model.generate(**inputs, max_new_tokens=MAX_TOKENS)
|
| 179 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 180 |
+
result = decoded_outputs[0]
|
| 181 |
+
status = "✅ **Success!** Translation done."
|
| 182 |
+
except Exception as e:
|
| 183 |
+
status = gr.Markdown(f"❌ **Unexpected error during translation:** {e}")
|
| 184 |
+
|
| 185 |
+
return result, status
|
| 186 |
+
###
|
| 187 |
+
|
| 188 |
+
@spaces.GPU
|
| 189 |
+
def process_chat(question: str, audio_path: str) -> str:
|
| 190 |
+
result = ""
|
| 191 |
+
status = gr.Markdown()
|
| 192 |
+
|
| 193 |
+
if audio_path is None:
|
| 194 |
+
status = gr.Markdown("Please provide some input audio: either upload an audio file or use the microphone.")
|
| 195 |
+
else:
|
| 196 |
+
try:
|
| 197 |
+
conversation = [
|
| 198 |
+
{
|
| 199 |
+
"role": "user",
|
| 200 |
+
"content": [
|
| 201 |
+
{
|
| 202 |
+
"type": "audio",
|
| 203 |
+
"path": audio_path,
|
| 204 |
+
},
|
| 205 |
+
{"type": "text", "text": question},
|
| 206 |
+
],
|
| 207 |
+
}
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
inputs = processor.apply_chat_template(conversation)
|
| 211 |
+
inputs = inputs.to(device, dtype=torch.bfloat16)
|
| 212 |
+
|
| 213 |
+
outputs = model.generate(**inputs, max_new_tokens=500)
|
| 214 |
+
decoded_outputs = processor.batch_decode(outputs[:, inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
| 215 |
+
|
| 216 |
+
result = decoded_outputs[0]
|
| 217 |
+
status = "✅ **Success!** Translation done."
|
| 218 |
+
except Exception as e:
|
| 219 |
+
status = gr.Markdown(f"❌ **Unexpected error during translation:** {e}")
|
| 220 |
+
|
| 221 |
+
return result, status
|
| 222 |
+
###
|
| 223 |
+
|
| 224 |
+
def disable_buttons():
|
| 225 |
+
return gr.update(interactive=False), gr.update(interactive=False), gr.update(interactive=False)
|
| 226 |
+
|
| 227 |
+
def enable_buttons():
|
| 228 |
+
return gr.update(interactive=True), gr.update(interactive=True), gr.update(interactive=True)
|
| 229 |
+
###
|
| 230 |
+
|
| 231 |
+
def clear_audio():
|
| 232 |
+
return None, None, None, None
|
| 233 |
+
###
|
| 234 |
+
|
| 235 |
+
@spaces.GPU
|
| 236 |
+
def voice_extract_demucs():
|
| 237 |
+
"""
|
| 238 |
+
Returns the path of the voice extracted file.
|
| 239 |
+
"""
|
| 240 |
+
try:
|
| 241 |
+
cmd = [
|
| 242 |
+
"demucs",
|
| 243 |
+
"--two-stems=vocals",
|
| 244 |
+
"--out", "demucs",
|
| 245 |
+
"audio_file.wav"
|
| 246 |
+
]
|
| 247 |
+
subprocess.run(cmd, check=True)
|
| 248 |
+
voice_path = os.path.join("demucs", "htdemucs", "audio_file", "vocals.wav")
|
| 249 |
+
success_message = "✅ **Success!** Voice extracted."
|
| 250 |
+
return voice_path, voice_path, gr.Markdown(success_message)
|
| 251 |
+
except Exception as e:
|
| 252 |
+
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
| 253 |
+
###
|
| 254 |
+
|
| 255 |
+
def secure_download_from_url(url: str):
|
| 256 |
+
"""
|
| 257 |
+
Validates a URL and downloads the file if it is an authorized media.
|
| 258 |
+
Returns the path of the downloaded file or an error message.
|
| 259 |
+
"""
|
| 260 |
+
# Step 1: Validate the URL format
|
| 261 |
+
if not validators.url(url):
|
| 262 |
+
return None, None, gr.Markdown("❌ **Error:** The provided URL is invalid.")
|
| 263 |
+
|
| 264 |
+
try:
|
| 265 |
+
# Step 2: Send a HEAD request to check the headers without downloading the content
|
| 266 |
+
# allow_redirects=True to follow redirects to the final file location.
|
| 267 |
+
# timeout to avoid blocking requests.
|
| 268 |
+
response = requests.head(url, allow_redirects=True, timeout=10)
|
| 269 |
+
|
| 270 |
+
# Check if the request was successful (status code 2xx)
|
| 271 |
+
response.raise_for_status()
|
| 272 |
+
|
| 273 |
+
# Step 3: Validate the content type (MIME type)
|
| 274 |
+
content_type = response.headers.get('Content-Type', '').split(';')[0].strip()
|
| 275 |
+
if content_type not in ALLOWED_MIME_TYPES:
|
| 276 |
+
error_message = (
|
| 277 |
+
f"❌ **Error:** The file type is not allowed.\n"
|
| 278 |
+
f" - **Type detected:** `{content_type}`\n"
|
| 279 |
+
f" - **Allowed types:** Audio and Video only."
|
| 280 |
+
)
|
| 281 |
+
return None, None, gr.Markdown(error_message)
|
| 282 |
+
|
| 283 |
+
# Step 4: Validate the file size
|
| 284 |
+
content_length = response.headers.get('Content-Length')
|
| 285 |
+
if content_length and int(content_length) > MAX_FILE_SIZE:
|
| 286 |
+
error_message = (
|
| 287 |
+
f"❌ **Error:** The file is too large.\n"
|
| 288 |
+
f" - **File size:** {int(content_length) / 1024 / 1024:.2f} MB\n"
|
| 289 |
+
f" - **Maximum allowed size:** {MAX_FILE_SIZE / 1024 / 1024:.2f} MB"
|
| 290 |
+
)
|
| 291 |
+
return None, None, gr.Markdown(error_message)
|
| 292 |
+
|
| 293 |
+
# Step 5: Secure streaming download
|
| 294 |
+
with requests.get(url, stream=True, timeout=20) as r:
|
| 295 |
+
r.raise_for_status()
|
| 296 |
+
|
| 297 |
+
# Extract the file name from the URL
|
| 298 |
+
parsed_url = urlparse(url)
|
| 299 |
+
filename = os.path.basename(parsed_url.path)
|
| 300 |
+
if not filename: # Si l'URL se termine par un '/'
|
| 301 |
+
filename = "downloaded_media_file"
|
| 302 |
+
|
| 303 |
+
filepath = os.path.join(DOWNLOAD_DIR, filename)
|
| 304 |
+
|
| 305 |
+
# --- Step 6: Download the audio ---
|
| 306 |
+
# Write the file in chunks to avoid overloading memory
|
| 307 |
+
with open(filepath, 'wb') as f:
|
| 308 |
+
downloaded_size = 0
|
| 309 |
+
for chunk in r.iter_content(chunk_size=8192):
|
| 310 |
+
downloaded_size += len(chunk)
|
| 311 |
+
if downloaded_size > MAX_FILE_SIZE:
|
| 312 |
+
os.remove(filepath) # Supprimer le fichier partiel
|
| 313 |
+
return None, None, gr.Markdown("❌ **Error:** The file exceeds the maximum allowed size during download.")
|
| 314 |
+
f.write(chunk)
|
| 315 |
+
|
| 316 |
+
# --- Step 7: Convert to WAV using Pydub ---
|
| 317 |
+
audio_file = AudioSegment.from_file(filepath)
|
| 318 |
+
file_handle = audio_file.export("audio_file.wav", format="wav")
|
| 319 |
+
|
| 320 |
+
# --- Step 8: Clean up ---
|
| 321 |
+
try:
|
| 322 |
+
files = glob.glob(DOWNLOAD_DIR)
|
| 323 |
+
for f in files:
|
| 324 |
+
os.remove(f)
|
| 325 |
+
except:
|
| 326 |
+
pass
|
| 327 |
+
|
| 328 |
+
success_message = (
|
| 329 |
+
f"✅ **Success!** File downloaded and saved."
|
| 330 |
+
)
|
| 331 |
+
|
| 332 |
+
# Returns the file path and a success message.
|
| 333 |
+
return "audio_file.wav", "audio_file.wav", gr.Markdown(success_message)
|
| 334 |
+
|
| 335 |
+
except requests.exceptions.RequestException as e:
|
| 336 |
+
# Handle network errors (timeout, DNS, connection refused, etc.)
|
| 337 |
+
return None, None, gr.Markdown(f"❌ **Network error:** Unable to reach URL. Details: {e}")
|
| 338 |
+
except Exception as e:
|
| 339 |
+
# Handle Other potential errors
|
| 340 |
+
return None, None, gr.Markdown(f"❌ **Unexpected error:** {e}")
|
| 341 |
+
###
|
| 342 |
+
|
| 343 |
+
def secure_download_youtube_audio(url: str):
|
| 344 |
+
"""
|
| 345 |
+
Returns the path of the downloaded file or an error message.
|
| 346 |
+
"""
|
| 347 |
+
# --- Step 1: Validate URL format with Regex ---
|
| 348 |
+
youtube_regex = re.compile(
|
| 349 |
+
r'^(https?://)?(www\.)?(youtube|youtu|youtube-nocookie)\.(com|be)/'
|
| 350 |
+
r'(watch\?v=|embed/|v/|.+\?v=)?([^&=%\?]{11})')
|
| 351 |
+
if not youtube_regex.match(url):
|
| 352 |
+
return None, None, gr.Markdown("❌ **Error:** The URL '{url}' does not appear to be a valid YouTube URL.")
|
| 353 |
+
|
| 354 |
+
try:
|
| 355 |
+
# --- Step 2: Check video availability ---
|
| 356 |
+
ydl_info_opts = {'quiet': True, 'skip_download': True}
|
| 357 |
+
try:
|
| 358 |
+
with yt_dlp.YoutubeDL(ydl_info_opts) as ydl:
|
| 359 |
+
info = ydl.extract_info(url, download=False)
|
| 360 |
+
except yt_dlp.utils.DownloadError as e:
|
| 361 |
+
return None, None, gr.Markdown(f"❌ **Error:** The video at URL '{url}' is unavailable ({str(e)})")
|
| 362 |
+
|
| 363 |
+
# --- Step 3: Select best audio format ---
|
| 364 |
+
formats = [f for f in info['formats'] if f.get('acodec') != 'none']
|
| 365 |
+
if not formats:
|
| 366 |
+
return None, None, gr.Markdown("❌ **Error:** No audio-only stream was found for this video.")
|
| 367 |
+
|
| 368 |
+
formats.sort(key=lambda f: f.get('abr') or 0, reverse=True)
|
| 369 |
+
best_audio_format = formats[0]
|
| 370 |
+
|
| 371 |
+
# --- Step 4: Check file size BEFORE downloading ---
|
| 372 |
+
filesize = best_audio_format.get('filesize') or best_audio_format.get('filesize_approx')
|
| 373 |
+
if filesize is None:
|
| 374 |
+
print("Could not determine file size before downloading.")
|
| 375 |
+
filesize = 1
|
| 376 |
+
|
| 377 |
+
if filesize > MAX_FILE_SIZE:
|
| 378 |
+
return None, None, gr.Markdown(
|
| 379 |
+
f"❌ **Error:** The file is too large.\n"
|
| 380 |
+
f" - **File size:** {filesize / 1024 / 1024:.2f} MB\n"
|
| 381 |
+
f" - **Maximum allowed size:** {MAX_FILE_SIZE / 1024 / 1024:.2f} MB"
|
| 382 |
+
)
|
| 383 |
+
|
| 384 |
+
# --- Step 5: Download & convert directly to WAV ---
|
| 385 |
+
ydl_opts = {
|
| 386 |
+
'quiet': True,
|
| 387 |
+
'format': f"{best_audio_format['format_id']}",
|
| 388 |
+
'outtmpl': "audio_file", # will be replaced by ffmpeg output
|
| 389 |
+
'postprocessors': [{
|
| 390 |
+
'key': 'FFmpegExtractAudio',
|
| 391 |
+
'preferredcodec': 'wav',
|
| 392 |
+
'preferredquality': '192',
|
| 393 |
+
}],
|
| 394 |
+
}
|
| 395 |
+
with yt_dlp.YoutubeDL(ydl_opts) as ydl:
|
| 396 |
+
ydl.download([url])
|
| 397 |
+
|
| 398 |
+
success_message = "✅ **Success!** Audio extracted and saved."
|
| 399 |
+
return "audio_file.wav", "audio_file.wav", gr.Markdown(success_message)
|
| 400 |
+
|
| 401 |
+
except FileNotFoundError:
|
| 402 |
+
return None, None, gr.Markdown("❌ **Error:** FFmpeg not found. Please ensure it is installed and in your system's PATH.")
|
| 403 |
+
except Exception as e:
|
| 404 |
+
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
| 405 |
+
###
|
| 406 |
+
|
| 407 |
+
def voice_extract_demucs():
|
| 408 |
+
"""
|
| 409 |
+
Returns the path of the voice extracted file.
|
| 410 |
+
"""
|
| 411 |
+
try:
|
| 412 |
+
cmd = [
|
| 413 |
+
"demucs",
|
| 414 |
+
"--two-stems=vocals",
|
| 415 |
+
"--out", "demucs",
|
| 416 |
+
"audio_file.wav"
|
| 417 |
+
]
|
| 418 |
+
subprocess.run(cmd, check=True)
|
| 419 |
+
voice_path = os.path.join("demucs", "htdemucs", "audio_file", "vocals.wav")
|
| 420 |
+
success_message = "✅ **Success!** Voice extracted."
|
| 421 |
+
return voice_path, voice_path, gr.Markdown(success_message)
|
| 422 |
+
except Exception as e:
|
| 423 |
+
return None, None, gr.Markdown(f"❌ **Error:** An unexpected ERROR occurred: {e}")
|
| 424 |
+
###
|
| 425 |
+
|
| 426 |
+
def clear_audio():
|
| 427 |
+
return None, None, None, None
|
| 428 |
+
###
|
| 429 |
+
|
| 430 |
+
|
| 431 |
+
|
| 432 |
+
#### Gradio interface
|
| 433 |
+
with gr.Blocks(title="Voxtral") as voxtral:
|
| 434 |
+
with gr.Row():
|
| 435 |
+
gr.Markdown("# **Voxtral Mini Evaluation**")
|
| 436 |
+
|
| 437 |
+
with gr.Accordion("🔎 More on Voxtral", open=False):
|
| 438 |
+
gr.Markdown("""## **Key Features:**
|
| 439 |
+
|
| 440 |
+
#### Voxtral builds upon Ministral-3B with powerful audio understanding capabilities.
|
| 441 |
+
##### - **Dedicated transcription mode**: Voxtral can operate in a pure speech transcription mode to maximize performance. By default, Voxtral automatically predicts the source audio language and transcribes the text accordingly
|
| 442 |
+
##### - **Long-form context**: With a 32k token context length, Voxtral handles audios up to 30 minutes for transcription, or 40 minutes for understanding
|
| 443 |
+
##### - **Built-in Q&A and summarization**: Supports asking questions directly through audio. Analyze audio and generate structured summaries without the need for separate ASR and language models
|
| 444 |
+
##### - **Natively multilingual**: Automatic language detection and state-of-the-art performance in the world’s most widely used languages (English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian)
|
| 445 |
+
##### - **Function-calling straight from voice**: Enables direct triggering of backend functions, workflows, or API calls based on spoken user intents
|
| 446 |
+
##### - **Highly capable at text**: Retains the text understanding capabilities of its language model backbone, Ministral-3B""")
|
| 447 |
+
|
| 448 |
+
gr.Markdown("""#### Voxtral Mini is an enhancement of **Ministral 3B**, incorporating state-of-the-art audio input \
|
| 449 |
+
capabilities while retaining best-in-class text performance. It excels at speech transcription, translation and \
|
| 450 |
+
audio understanding. Available languages: English, Spanish, French, Portuguese, Hindi, German, Dutch, Italian.""")
|
| 451 |
+
|
| 452 |
+
gr.Markdown("### **1.Choose the audio:**")
|
| 453 |
+
sel_audio = gr.State()
|
| 454 |
+
with gr.Row():
|
| 455 |
+
with gr.Tabs():
|
| 456 |
+
with gr.Tab("From record or file upload"):
|
| 457 |
+
gr.Markdown("### **Upload an audio file, record via microphone, or select a demo file:**")
|
| 458 |
+
gr.Markdown("### *(Voxtral handles audios up to 30 minutes for transcription; if longer, it will be cut into chunks)*")
|
| 459 |
+
sel_audio1 = gr.Audio(sources=["microphone", "upload"], type="filepath",
|
| 460 |
+
label="Set an audio file to process it:")
|
| 461 |
+
example1 = [["mapo_tofu.mp3"]]
|
| 462 |
+
gr.Examples(
|
| 463 |
+
examples=example1,
|
| 464 |
+
inputs=sel_audio1,
|
| 465 |
+
outputs=None,
|
| 466 |
+
fn=None,
|
| 467 |
+
cache_examples=False,
|
| 468 |
+
run_on_click=False
|
| 469 |
+
)
|
| 470 |
+
status_output1 = gr.Markdown()
|
| 471 |
+
with gr.Row():
|
| 472 |
+
voice_button1 = gr.Button("Extract voice (if noisy environment)")
|
| 473 |
+
voice_button1.click(
|
| 474 |
+
fn=voice_extract_demucs,
|
| 475 |
+
outputs=[sel_audio, sel_audio1, status_output1])
|
| 476 |
+
clear_audio1 = gr.Button("Clear audio")
|
| 477 |
+
clear_audio1.click(
|
| 478 |
+
fn=clear_audio,
|
| 479 |
+
outputs=[sel_audio, sel_audio, sel_audio1, status_output1])
|
| 480 |
+
|
| 481 |
+
with gr.Tab("From file url (audio or video file)"):
|
| 482 |
+
gr.Markdown("### **Enter the url of the file (mp3, wav, mp4, ...):**")
|
| 483 |
+
url_input2 = gr.Textbox(label="URL (MP3 or MP4 file)",
|
| 484 |
+
placeholder="https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4")
|
| 485 |
+
example2 = [["https://huggingface.co/datasets/merve/vlm_test_images/resolve/main/mapo_tofu.mp4"]]
|
| 486 |
+
gr.Examples(
|
| 487 |
+
examples=example2,
|
| 488 |
+
inputs=url_input2,
|
| 489 |
+
outputs=None,
|
| 490 |
+
fn=None,
|
| 491 |
+
cache_examples=False,
|
| 492 |
+
run_on_click=False
|
| 493 |
+
)
|
| 494 |
+
download_button2 = gr.Button("Check and upload", variant="primary")
|
| 495 |
+
input_audio2 = gr.Audio()
|
| 496 |
+
status_output2 = gr.Markdown()
|
| 497 |
+
download_button2.click(
|
| 498 |
+
fn=secure_download_from_url,
|
| 499 |
+
inputs=url_input2,
|
| 500 |
+
outputs=[input_audio2, sel_audio, status_output2]
|
| 501 |
+
)
|
| 502 |
+
with gr.Row():
|
| 503 |
+
voice_button2 = gr.Button("Extract voice (if noisy environment)")
|
| 504 |
+
voice_button2.click(
|
| 505 |
+
fn=voice_extract_demucs,
|
| 506 |
+
outputs=[input_audio2, sel_audio, status_output2])
|
| 507 |
+
clear_audio1 = gr.Button("Clear audio")
|
| 508 |
+
clear_audio1.click(
|
| 509 |
+
fn=clear_audio,
|
| 510 |
+
outputs=[sel_audio, url_input2, input_audio2, status_output2])
|
| 511 |
+
|
| 512 |
+
with gr.Tab("From Youtube url:"):
|
| 513 |
+
gr.Markdown("### **Enter the url of the Youtube video:**")
|
| 514 |
+
url_input3 = gr.Textbox(label="Youtube url",
|
| 515 |
+
placeholder="https://www.youtube.com/...")
|
| 516 |
+
download_button3 = gr.Button("Check and upload", variant="primary")
|
| 517 |
+
input_audio3 = gr.Audio()
|
| 518 |
+
status_output3 = gr.Markdown()
|
| 519 |
+
download_button3.click(
|
| 520 |
+
fn=secure_download_youtube_audio,
|
| 521 |
+
inputs=url_input3,
|
| 522 |
+
outputs=[input_audio3, sel_audio, status_output3]
|
| 523 |
+
)
|
| 524 |
+
with gr.Row():
|
| 525 |
+
voice_button3 = gr.Button("Extract voice (if noisy environment)")
|
| 526 |
+
voice_button3.click(
|
| 527 |
+
fn=voice_extract_demucs,
|
| 528 |
+
outputs=[input_audio3, sel_audio, status_output3])
|
| 529 |
+
clear_audio1 = gr.Button("Clear audio")
|
| 530 |
+
clear_audio1.click(
|
| 531 |
+
fn=clear_audio,
|
| 532 |
+
outputs=[sel_audio, url_input3, input_audio3, status_output3])
|
| 533 |
+
|
| 534 |
+
with gr.Row():
|
| 535 |
+
gr.Markdown("### **2. Choose one of theese tasks:**")
|
| 536 |
+
|
| 537 |
+
with gr.Row():
|
| 538 |
+
with gr.Column():
|
| 539 |
+
with gr.Accordion("📝 Transcription", open=True):
|
| 540 |
+
sel_language = gr.Dropdown(
|
| 541 |
+
choices=list(dict_languages.keys()),
|
| 542 |
+
value="English",
|
| 543 |
+
label="Select the language of the audio file:"
|
| 544 |
+
)
|
| 545 |
+
submit_transcript = gr.Button("Extract transcription", variant="primary")
|
| 546 |
+
text_transcript = gr.Textbox(label="💬 Generated transcription", lines=10)
|
| 547 |
+
status_transcript = gr.Markdown()
|
| 548 |
+
|
| 549 |
+
with gr.Column():
|
| 550 |
+
with gr.Accordion("🔁 Translation", open=True):
|
| 551 |
+
list_language = list(dict_languages.keys())
|
| 552 |
+
list_language.pop(list_language.index(sel_language.value)) # Fix: Access the value of the dropdown
|
| 553 |
+
sel_translate_language = gr.Dropdown(
|
| 554 |
+
choices=list(dict_languages.keys()),
|
| 555 |
+
value="English",
|
| 556 |
+
label="Select the language for translation:"
|
| 557 |
+
)
|
| 558 |
+
submit_translate = gr.Button("Translate audio file", variant="primary")
|
| 559 |
+
text_translate = gr.Textbox(label="💬 Generated translation", lines=10)
|
| 560 |
+
status_translate = gr.Markdown()
|
| 561 |
+
|
| 562 |
+
with gr.Column():
|
| 563 |
+
with gr.Accordion("🤖 Ask audio file", open=True):
|
| 564 |
+
question_chat = gr.Textbox(label="Enter your question about audio file:", placeholder="Enter your question about audio file")
|
| 565 |
+
submit_chat = gr.Button("Ask audio file", variant="primary")
|
| 566 |
+
example_chat = [["What is the subject of this audio file?"], ["Quels sont les ingrédients ?"]]
|
| 567 |
+
gr.Examples(
|
| 568 |
+
examples=example_chat,
|
| 569 |
+
inputs=question_chat,
|
| 570 |
+
outputs=None,
|
| 571 |
+
fn=None,
|
| 572 |
+
cache_examples=False,
|
| 573 |
+
run_on_click=False
|
| 574 |
+
)
|
| 575 |
+
text_chat = gr.Textbox(label="💬 Model answer", lines=10)
|
| 576 |
+
status_chat = gr.Markdown()
|
| 577 |
+
|
| 578 |
+
### Processing
|
| 579 |
+
|
| 580 |
+
# Transcription
|
| 581 |
+
submit_transcript.click(
|
| 582 |
+
disable_buttons,
|
| 583 |
+
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 584 |
+
trigger_mode="once",
|
| 585 |
+
).then(
|
| 586 |
+
fn=process_transcript,
|
| 587 |
+
inputs=[sel_language, sel_audio],
|
| 588 |
+
outputs=[text_transcript, status_transcript]
|
| 589 |
+
).then(
|
| 590 |
+
enable_buttons,
|
| 591 |
+
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 592 |
+
)
|
| 593 |
+
|
| 594 |
+
# Translation
|
| 595 |
+
submit_translate.click(
|
| 596 |
+
disable_buttons,
|
| 597 |
+
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 598 |
+
trigger_mode="once",
|
| 599 |
+
).then(
|
| 600 |
+
fn=process_translate,
|
| 601 |
+
inputs=[sel_translate_language, sel_audio],
|
| 602 |
+
outputs=[text_translate, status_translate]
|
| 603 |
+
).then(
|
| 604 |
+
enable_buttons,
|
| 605 |
+
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 606 |
+
)
|
| 607 |
+
|
| 608 |
+
# Chat
|
| 609 |
+
submit_chat.click(
|
| 610 |
+
disable_buttons,
|
| 611 |
+
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 612 |
+
trigger_mode="once",
|
| 613 |
+
).then(
|
| 614 |
+
fn=process_chat,
|
| 615 |
+
inputs=[question_chat, sel_audio],
|
| 616 |
+
outputs=[text_chat, status_chat]
|
| 617 |
+
).then(
|
| 618 |
+
enable_buttons,
|
| 619 |
+
outputs=[submit_transcript, submit_translate, submit_chat],
|
| 620 |
+
)
|
| 621 |
+
|
| 622 |
+
### Launch the app
|
| 623 |
+
|
| 624 |
+
if __name__ == "__main__":
|
| 625 |
+
voxtral.queue().launch(debug=True)
|