Spaces:
Running
Running
thai
commited on
Commit
Β·
4143208
1
Parent(s):
a5c2bfd
Initial commit of Lo-fi album app
Browse files- app.py +10 -0
- lofi_mix.py +712 -0
- requirements.txt +6 -0
app.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from lofi_mix import create_gradio_interface
|
| 3 |
+
|
| 4 |
+
def main():
|
| 5 |
+
interface = create_gradio_interface()
|
| 6 |
+
interface.launch()
|
| 7 |
+
|
| 8 |
+
if __name__ == "__main__":
|
| 9 |
+
main()
|
| 10 |
+
|
lofi_mix.py
ADDED
|
@@ -0,0 +1,712 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import List, Optional, Any, Dict, TypedDict, Annotated
|
| 2 |
+
from pydantic import BaseModel, Field
|
| 3 |
+
import pandas as pd
|
| 4 |
+
import csv
|
| 5 |
+
import io
|
| 6 |
+
import os
|
| 7 |
+
# from dataclasses import dataclass
|
| 8 |
+
# from enum import Enum
|
| 9 |
+
|
| 10 |
+
from langgraph.graph import StateGraph, START, END
|
| 11 |
+
from langgraph.graph.message import add_messages
|
| 12 |
+
from langchain_google_genai import ChatGoogleGenerativeAI
|
| 13 |
+
# from langchain_openai import ChatOpenAI
|
| 14 |
+
from langchain_core.messages import HumanMessage, AIMessage, SystemMessage
|
| 15 |
+
import gradio as gr
|
| 16 |
+
|
| 17 |
+
# Enhanced State Models
|
| 18 |
+
class StyleData(BaseModel):
|
| 19 |
+
"""Enhanced style data with additional context for better song generation"""
|
| 20 |
+
genre: List[str] = Field(description="Primary musical genres (e.g. lo-fi hip hop, jazzhop, chillhop)")
|
| 21 |
+
mood: List[str] = Field(description="Emotional tones (e.g. nostalgic, dreamy, melancholic, peaceful)")
|
| 22 |
+
instruments: List[str] = Field(description="Key instruments (e.g. piano, vinyl crackle, guitar, synth, drums)")
|
| 23 |
+
concept: str = Field(description="Artistic or thematic concept summary")
|
| 24 |
+
bpm_range: str = Field(description="Tempo range (e.g. 65-80 BPM)")
|
| 25 |
+
audio_texture: str = Field(description="Sound characteristics (e.g. warm, grainy, cassette-like)")
|
| 26 |
+
culture_or_season: Optional[str] = Field(description="Cultural reference or seasonal theme")
|
| 27 |
+
|
| 28 |
+
# New fields for better context
|
| 29 |
+
time_of_day: Optional[str] = Field(description="Preferred listening time (e.g. late night, morning, sunset)")
|
| 30 |
+
activity_context: Optional[str] = Field(description="Activity context (e.g. studying, relaxing, working)")
|
| 31 |
+
reference_artists: List[str] = Field(default=[], description="Similar artists or style references")
|
| 32 |
+
|
| 33 |
+
class SunoPrompt(BaseModel):
|
| 34 |
+
"""Enhanced Suno prompt with better structure"""
|
| 35 |
+
song_name: str = Field(description="Catchy, descriptive title reflecting theme/vibe")
|
| 36 |
+
genre: str = Field(description="Specific genre/sub-genre")
|
| 37 |
+
song_prompt: str = Field(description="Detailed prompt for SunoAI including style, mood, instruments, atmosphere")
|
| 38 |
+
# tags: List[str] = Field(description="Relevant tags for discoverability")
|
| 39 |
+
# duration_hint: Optional[str] = Field(description="Suggested duration (e.g. '2-3 minutes')")
|
| 40 |
+
|
| 41 |
+
class Album(BaseModel):
|
| 42 |
+
"""Collection of songs forming a cohesive album"""
|
| 43 |
+
album_name: str = Field(description="Overall album/playlist name")
|
| 44 |
+
theme: str = Field(description="Unifying theme across all tracks")
|
| 45 |
+
songs: List[SunoPrompt] = Field(description="List of song prompts")
|
| 46 |
+
track_count: int = Field(description="Total number of tracks")
|
| 47 |
+
|
| 48 |
+
class YouTubeContent(BaseModel):
|
| 49 |
+
"""YouTube-optimized content for each song"""
|
| 50 |
+
cover_image_prompt: str = Field(description="AI image generation prompt for cover art")
|
| 51 |
+
title: str = Field(description="YouTube-optimized title with keywords")
|
| 52 |
+
description: str = Field(description="Detailed description with tags and timestamps")
|
| 53 |
+
tags: List[str] = Field(description="YouTube tags for discoverability")
|
| 54 |
+
thumbnail_elements: List[str] = Field(description="Key visual elements for thumbnail")
|
| 55 |
+
|
| 56 |
+
class State(TypedDict):
|
| 57 |
+
"""Enhanced state with better tracking and error handling"""
|
| 58 |
+
user_input: str
|
| 59 |
+
processing_stage: str # Track current processing stage
|
| 60 |
+
style_data: Optional[StyleData]
|
| 61 |
+
album: Optional[Album]
|
| 62 |
+
number_of_song: int
|
| 63 |
+
youtube_content: List[YouTubeContent]
|
| 64 |
+
messages: Annotated[List[Any], add_messages]
|
| 65 |
+
errors: List[str] # Track any errors
|
| 66 |
+
metadata: Dict[str, Any] # Additional metadata
|
| 67 |
+
|
| 68 |
+
# Agent Implementation
|
| 69 |
+
class LoFiSongGenerator:
|
| 70 |
+
def __init__(self, api_key: str = None):
|
| 71 |
+
self.api_key = api_key
|
| 72 |
+
self.llm = None
|
| 73 |
+
self.graph = None
|
| 74 |
+
if api_key:
|
| 75 |
+
self._initialize_llm()
|
| 76 |
+
|
| 77 |
+
def _initialize_llm(self):
|
| 78 |
+
"""Initialize the LLM with the provided API key"""
|
| 79 |
+
self.llm = ChatGoogleGenerativeAI(
|
| 80 |
+
model="gemini-2.5-flash-preview-04-17",
|
| 81 |
+
temperature=0.7,
|
| 82 |
+
google_api_key=self.api_key
|
| 83 |
+
)
|
| 84 |
+
self.graph = self._build_graph()
|
| 85 |
+
|
| 86 |
+
def set_api_key(self, api_key: str):
|
| 87 |
+
"""Set a new API key and reinitialize the LLM"""
|
| 88 |
+
self.api_key = api_key
|
| 89 |
+
self._initialize_llm()
|
| 90 |
+
|
| 91 |
+
def _build_graph(self) -> StateGraph:
|
| 92 |
+
"""Build the LangGraph workflow"""
|
| 93 |
+
workflow = StateGraph(State)
|
| 94 |
+
|
| 95 |
+
# Add nodes
|
| 96 |
+
workflow.add_node("extract_style", self.extract_style_agent)
|
| 97 |
+
workflow.add_node("generate_songs", self.song_write_agent)
|
| 98 |
+
workflow.add_node("create_youtube_content", self.cover_title_agent)
|
| 99 |
+
workflow.add_node("compile_output", self.compile_output)
|
| 100 |
+
|
| 101 |
+
# Add edges
|
| 102 |
+
workflow.add_edge(START, "extract_style")
|
| 103 |
+
workflow.add_edge("extract_style", "generate_songs")
|
| 104 |
+
workflow.add_edge("generate_songs", "create_youtube_content")
|
| 105 |
+
workflow.add_edge("create_youtube_content", "compile_output")
|
| 106 |
+
workflow.add_edge("compile_output", END)
|
| 107 |
+
|
| 108 |
+
return workflow.compile()
|
| 109 |
+
|
| 110 |
+
def extract_style_agent(self, state: State) -> State:
|
| 111 |
+
"""Agent 1: Extract style information from user input"""
|
| 112 |
+
try:
|
| 113 |
+
state["processing_stage"] = "Extracting style information..."
|
| 114 |
+
|
| 115 |
+
system_prompt = """You are a music style analysis expert specializing in lo-fi and chill music genres.
|
| 116 |
+
Analyze the user's input and extract detailed style information that will guide song generation.
|
| 117 |
+
|
| 118 |
+
You MUST respond with a valid JSON object containing the following fields:
|
| 119 |
+
{
|
| 120 |
+
"genre": ["list of genres like lo-fi hip hop, jazzhop, chillhop"],
|
| 121 |
+
"mood": ["list of moods like nostalgic, dreamy, melancholic"],
|
| 122 |
+
"instruments": ["list of instruments like piano, vinyl, guitar, synth"],
|
| 123 |
+
"concept": "short description of the artistic concept",
|
| 124 |
+
"bpm_range": "tempo range like 65-80 BPM",
|
| 125 |
+
"audio_texture": "sound characteristics like warm, grainy, cassette-like",
|
| 126 |
+
"culture_or_season": "cultural or seasonal theme (optional)",
|
| 127 |
+
"time_of_day": "preferred listening time (optional)",
|
| 128 |
+
"activity_context": "activity context like studying, relaxing (optional)",
|
| 129 |
+
"reference_artists": ["list of similar artists or references"]
|
| 130 |
+
}
|
| 131 |
+
|
| 132 |
+
Analyze the user's request and extract all relevant musical style information.
|
| 133 |
+
Be creative and detailed in your analysis but ensure valid JSON format."""
|
| 134 |
+
|
| 135 |
+
user_message = f"Analyze this music style request and return JSON: {state['user_input']}"
|
| 136 |
+
|
| 137 |
+
messages = [
|
| 138 |
+
SystemMessage(content=system_prompt),
|
| 139 |
+
HumanMessage(content=user_message)
|
| 140 |
+
]
|
| 141 |
+
|
| 142 |
+
response = self.llm.invoke(messages)
|
| 143 |
+
|
| 144 |
+
# Parse the actual LLM response
|
| 145 |
+
style_data = self._parse_style_response(response.content)
|
| 146 |
+
|
| 147 |
+
state["style_data"] = style_data
|
| 148 |
+
state["messages"].append(AIMessage(content=f"Style analysis complete: {style_data.concept}"))
|
| 149 |
+
|
| 150 |
+
except Exception as e:
|
| 151 |
+
state["errors"].append(f"Style extraction error: {str(e)}")
|
| 152 |
+
|
| 153 |
+
return state
|
| 154 |
+
|
| 155 |
+
def song_write_agent(self, state: State) -> State:
|
| 156 |
+
"""Agent 2: Generate song prompts based on style data"""
|
| 157 |
+
try:
|
| 158 |
+
state["processing_stage"] = "Generating song prompts..."
|
| 159 |
+
|
| 160 |
+
if not state.get("style_data"):
|
| 161 |
+
raise ValueError("No style data available")
|
| 162 |
+
|
| 163 |
+
style_data = state["style_data"]
|
| 164 |
+
|
| 165 |
+
system_prompt = f"""You are a creative music producer specializing in lo-fi beats and chill music.
|
| 166 |
+
Generate {state["number_of_song"]} unique song prompts that form a cohesive album based on the provided style data.
|
| 167 |
+
|
| 168 |
+
You MUST respond with a valid JSON object in this format:
|
| 169 |
+
{{
|
| 170 |
+
"album_name": "Name of the album/playlist",
|
| 171 |
+
"theme": "Unifying theme description",
|
| 172 |
+
"track_count": {state["number_of_song"]},
|
| 173 |
+
"songs": [
|
| 174 |
+
{{
|
| 175 |
+
"song_name": "Title of the song",
|
| 176 |
+
"genre": "Specific genre",
|
| 177 |
+
"song_prompt": "Detailed Suno AI prompt with instruments, mood, atmosphere"
|
| 178 |
+
}}
|
| 179 |
+
]
|
| 180 |
+
}}
|
| 181 |
+
|
| 182 |
+
Each song should:
|
| 183 |
+
- Have a unique but related theme
|
| 184 |
+
- Songs must be ordered by semantic proximity to the input style or mood.
|
| 185 |
+
- Describe the mood and atmosphere clearly without labeling them as 'Genre:', 'Mood:', or other headers
|
| 186 |
+
- Avoid repetition
|
| 187 |
+
- Be optimized for SunoAI generation
|
| 188 |
+
- Vary slightly in tempo and energy while maintaining cohesion
|
| 189 |
+
|
| 190 |
+
"""
|
| 191 |
+
|
| 192 |
+
style_summary = f"""
|
| 193 |
+
Genre: {', '.join(style_data.genre)}
|
| 194 |
+
Mood: {', '.join(style_data.mood)}
|
| 195 |
+
Instruments: {', '.join(style_data.instruments)}
|
| 196 |
+
Concept: {style_data.concept}
|
| 197 |
+
BPM: {style_data.bpm_range}
|
| 198 |
+
Texture: {style_data.audio_texture}
|
| 199 |
+
Context: {style_data.culture_or_season or 'General'}
|
| 200 |
+
Time: {style_data.time_of_day or 'Anytime'}
|
| 201 |
+
Activity: {style_data.activity_context or 'General listening'}
|
| 202 |
+
"""
|
| 203 |
+
|
| 204 |
+
user_message = f"Generate a cohesive lo-fi album JSON based on this style analysis:\n{style_summary}"
|
| 205 |
+
|
| 206 |
+
messages = [
|
| 207 |
+
SystemMessage(content=system_prompt),
|
| 208 |
+
HumanMessage(content=user_message)
|
| 209 |
+
]
|
| 210 |
+
|
| 211 |
+
response = self.llm.invoke(messages)
|
| 212 |
+
|
| 213 |
+
# Parse the actual LLM response
|
| 214 |
+
album = self._parse_album_response(response.content)
|
| 215 |
+
|
| 216 |
+
state["album"] = album
|
| 217 |
+
state["messages"].append(AIMessage(content=f"Generated {len(album.songs)} songs for album: {album.album_name}"))
|
| 218 |
+
|
| 219 |
+
except Exception as e:
|
| 220 |
+
state["errors"].append(f"Song generation error: {str(e)}")
|
| 221 |
+
|
| 222 |
+
return state
|
| 223 |
+
|
| 224 |
+
def cover_title_agent(self, state: State) -> State:
|
| 225 |
+
"""Agent 3: Generate YouTube titles, descriptions, and cover art prompts"""
|
| 226 |
+
try:
|
| 227 |
+
state["processing_stage"] = "Creating YouTube content..."
|
| 228 |
+
|
| 229 |
+
if not state.get("album"):
|
| 230 |
+
raise ValueError("No album data available")
|
| 231 |
+
|
| 232 |
+
album = state["album"]
|
| 233 |
+
|
| 234 |
+
system_prompt = """You are a YouTube content optimization expert specializing in music content.
|
| 235 |
+
For the provided album, create YouTube content for that album.
|
| 236 |
+
|
| 237 |
+
You MUST respond with a valid JSON array in this format:
|
| 238 |
+
[
|
| 239 |
+
{
|
| 240 |
+
"cover_image_prompt": "Detailed AI image generation prompt for cover art",
|
| 241 |
+
"title": "SEO-optimized YouTube title with keywords",
|
| 242 |
+
"description": "Detailed description with hashtags and context",
|
| 243 |
+
"tags": ["youtube", "tags", "for", "discoverability"],
|
| 244 |
+
"thumbnail_elements": ["key", "visual", "elements"]
|
| 245 |
+
}
|
| 246 |
+
]
|
| 247 |
+
|
| 248 |
+
You should:
|
| 249 |
+
1. SEO-optimized title that includes relevant keywords
|
| 250 |
+
2. Detailed description with hashtags and timestamps
|
| 251 |
+
3. AI image generation prompt for cover art
|
| 252 |
+
4. List of YouTube tags for discoverability
|
| 253 |
+
5. Thumbnail design elements
|
| 254 |
+
6. Think 3 prompts difference
|
| 255 |
+
|
| 256 |
+
Focus on lo-fi, chill, study music, and relaxation keywords.
|
| 257 |
+
Make content discoverable but authentic."""
|
| 258 |
+
|
| 259 |
+
album_info = f"""
|
| 260 |
+
Album: {album.album_name}
|
| 261 |
+
Theme: {album.theme}
|
| 262 |
+
Songs: {[{'name': song.song_name, 'genre': song.genre} for song in album.songs]}
|
| 263 |
+
"""
|
| 264 |
+
|
| 265 |
+
user_message = f"Create YouTube content JSON array for this album:\n{album_info}"
|
| 266 |
+
|
| 267 |
+
messages = [
|
| 268 |
+
SystemMessage(content=system_prompt),
|
| 269 |
+
HumanMessage(content=user_message)
|
| 270 |
+
]
|
| 271 |
+
|
| 272 |
+
response = self.llm.invoke(messages)
|
| 273 |
+
|
| 274 |
+
# Parse the actual LLM response
|
| 275 |
+
youtube_content = self._parse_youtube_response(response.content)
|
| 276 |
+
|
| 277 |
+
state["youtube_content"] = youtube_content
|
| 278 |
+
state["messages"].append(AIMessage(content=f"Created YouTube content for {len(youtube_content)} songs"))
|
| 279 |
+
|
| 280 |
+
except Exception as e:
|
| 281 |
+
state["errors"].append(f"YouTube content generation error: {str(e)}")
|
| 282 |
+
|
| 283 |
+
return state
|
| 284 |
+
|
| 285 |
+
def compile_output(self, state: State) -> State:
|
| 286 |
+
"""Compile final output into two separate CSV files"""
|
| 287 |
+
try:
|
| 288 |
+
state["processing_stage"] = "Compiling final output..."
|
| 289 |
+
|
| 290 |
+
if not state.get("album") or not state.get("youtube_content"):
|
| 291 |
+
raise ValueError("Missing required data for compilation")
|
| 292 |
+
|
| 293 |
+
album = state["album"]
|
| 294 |
+
youtube_content = state["youtube_content"]
|
| 295 |
+
|
| 296 |
+
# Create Album/Song CSV data
|
| 297 |
+
album_data = []
|
| 298 |
+
for i, song in enumerate(album.songs):
|
| 299 |
+
album_data.append({
|
| 300 |
+
"track_number": i + 1,
|
| 301 |
+
"song_name": song.song_name,
|
| 302 |
+
"genre": song.genre,
|
| 303 |
+
"suno_prompt": song.song_prompt
|
| 304 |
+
})
|
| 305 |
+
|
| 306 |
+
# Create YouTube CSV data
|
| 307 |
+
youtube_text_output = ""
|
| 308 |
+
for i, yt in enumerate(youtube_content, 1):
|
| 309 |
+
youtube_text_output += f"ID {i}:\n"
|
| 310 |
+
youtube_text_output += f"Title: {yt.title}\n"
|
| 311 |
+
youtube_text_output += f"Description: {yt.description}\n"
|
| 312 |
+
youtube_text_output += f"Tags: {', '.join(yt.tags)}\n"
|
| 313 |
+
youtube_text_output += f"Cover Image Prompt: {yt.cover_image_prompt}\n"
|
| 314 |
+
youtube_text_output += f"Thumbnail Elements: {', '.join(yt.thumbnail_elements)}\n"
|
| 315 |
+
youtube_text_output += "\n"
|
| 316 |
+
youtube_text_output += "-----------------------------------------------------------"
|
| 317 |
+
youtube_text_output += "\n"
|
| 318 |
+
|
| 319 |
+
# Get the directory where the app is running
|
| 320 |
+
app_dir = os.path.dirname(os.path.abspath(__file__))
|
| 321 |
+
|
| 322 |
+
# Sanitize album name for filename
|
| 323 |
+
import re
|
| 324 |
+
sanitized_album_name = re.sub(r'[<>:"/\\|?*]', '_', album.album_name)
|
| 325 |
+
sanitized_album_name = sanitized_album_name.strip()
|
| 326 |
+
|
| 327 |
+
# Define file paths with proper extension
|
| 328 |
+
album_filename = f"{sanitized_album_name}_songs.csv"
|
| 329 |
+
youtube_filename = f"{sanitized_album_name}_youtube.txt"
|
| 330 |
+
|
| 331 |
+
album_filepath = os.path.join(app_dir, album_filename)
|
| 332 |
+
youtube_filepath = os.path.join(app_dir, youtube_filename)
|
| 333 |
+
|
| 334 |
+
# Create StringIO objects for CSV content
|
| 335 |
+
album_csv_content = io.StringIO()
|
| 336 |
+
|
| 337 |
+
# Write Album CSV content to StringIO
|
| 338 |
+
if album_data:
|
| 339 |
+
album_fieldnames = album_data[0].keys()
|
| 340 |
+
album_writer = csv.DictWriter(album_csv_content, fieldnames=album_fieldnames)
|
| 341 |
+
album_writer.writeheader()
|
| 342 |
+
album_writer.writerows(album_data)
|
| 343 |
+
|
| 344 |
+
# Write to file
|
| 345 |
+
with open(album_filepath, 'w', newline='', encoding='utf-8') as csvfile:
|
| 346 |
+
csvfile.write(album_csv_content.getvalue())
|
| 347 |
+
|
| 348 |
+
# Write YouTube text output to file
|
| 349 |
+
if youtube_text_output:
|
| 350 |
+
with open(youtube_filepath, 'w', encoding='utf-8') as txtfile:
|
| 351 |
+
txtfile.write(youtube_text_output)
|
| 352 |
+
|
| 353 |
+
# Store both CSV outputs and file paths in state
|
| 354 |
+
state["metadata"]["album_csv"] = album_csv_content.getvalue()
|
| 355 |
+
state["metadata"]["youtube_txt"] = youtube_text_output
|
| 356 |
+
state["metadata"]["album_csv_file"] = album_filepath
|
| 357 |
+
state["metadata"]["youtube_txt_file"] = youtube_filepath
|
| 358 |
+
state["metadata"]["total_songs"] = len(album_data)
|
| 359 |
+
state["metadata"]["album_name"] = album.album_name
|
| 360 |
+
state["processing_stage"] = "Complete!"
|
| 361 |
+
|
| 362 |
+
except Exception as e:
|
| 363 |
+
state["errors"].append(f"Compilation error: {str(e)}")
|
| 364 |
+
# Clear file paths if there was an error
|
| 365 |
+
state["metadata"]["album_csv_file"] = None
|
| 366 |
+
state["metadata"]["youtube_txt_file"] = None
|
| 367 |
+
|
| 368 |
+
return state
|
| 369 |
+
|
| 370 |
+
# Helper methods for parsing LLM responses
|
| 371 |
+
def _parse_style_response(self, response_content: str) -> StyleData:
|
| 372 |
+
"""Parse LLM JSON response into StyleData object"""
|
| 373 |
+
import json
|
| 374 |
+
import re
|
| 375 |
+
|
| 376 |
+
try:
|
| 377 |
+
# Extract JSON from response (handle cases where LLM adds extra text)
|
| 378 |
+
json_match = re.search(r'\{.*\}', response_content, re.DOTALL)
|
| 379 |
+
if json_match:
|
| 380 |
+
json_str = json_match.group()
|
| 381 |
+
data = json.loads(json_str)
|
| 382 |
+
|
| 383 |
+
return StyleData(
|
| 384 |
+
genre=data.get("genre", []),
|
| 385 |
+
mood=data.get("mood", []),
|
| 386 |
+
instruments=data.get("instruments", []),
|
| 387 |
+
concept=data.get("concept", "Lo-fi music"),
|
| 388 |
+
bpm_range=data.get("bpm_range"),
|
| 389 |
+
audio_texture=data.get("audio_texture"),
|
| 390 |
+
culture_or_season=data.get("culture_or_season"),
|
| 391 |
+
time_of_day=data.get("time_of_day"),
|
| 392 |
+
activity_context=data.get("activity_context"),
|
| 393 |
+
reference_artists=data.get("reference_artists", [])
|
| 394 |
+
)
|
| 395 |
+
else:
|
| 396 |
+
raise ValueError("No JSON found in response")
|
| 397 |
+
|
| 398 |
+
except (json.JSONDecodeError, ValueError) as e:
|
| 399 |
+
# Fallback: try to extract information from natural language
|
| 400 |
+
return self._fallback_parse_style(response_content)
|
| 401 |
+
|
| 402 |
+
def _fallback_parse_style(self, content: str) -> StyleData:
|
| 403 |
+
"""Fallback parser when JSON parsing fails"""
|
| 404 |
+
# Simple keyword extraction as fallback
|
| 405 |
+
content_lower = content.lower()
|
| 406 |
+
|
| 407 |
+
genres = []
|
| 408 |
+
if "lo-fi" in content_lower or "lofi" in content_lower:
|
| 409 |
+
genres.append("lo-fi hip hop")
|
| 410 |
+
if "jazz" in content_lower:
|
| 411 |
+
genres.append("jazzhop")
|
| 412 |
+
if "chill" in content_lower:
|
| 413 |
+
genres.append("chillhop")
|
| 414 |
+
if not genres:
|
| 415 |
+
genres = ["lo-fi hip hop"]
|
| 416 |
+
|
| 417 |
+
moods = []
|
| 418 |
+
for mood in ["nostalgic", "dreamy", "peaceful", "melancholic", "relaxing", "cozy"]:
|
| 419 |
+
if mood in content_lower:
|
| 420 |
+
moods.append(mood)
|
| 421 |
+
if not moods:
|
| 422 |
+
moods = ["relaxing"]
|
| 423 |
+
|
| 424 |
+
instruments = []
|
| 425 |
+
for instrument in ["piano", "guitar", "vinyl", "drums", "synth", "saxophone"]:
|
| 426 |
+
if instrument in content_lower:
|
| 427 |
+
instruments.append(instrument)
|
| 428 |
+
if not instruments:
|
| 429 |
+
instruments = ["piano", "soft drums"]
|
| 430 |
+
|
| 431 |
+
return StyleData(
|
| 432 |
+
genre=genres,
|
| 433 |
+
mood=moods,
|
| 434 |
+
instruments=instruments,
|
| 435 |
+
concept=f"Musical style based on: {content[:100]}...",
|
| 436 |
+
bpm_range="slow beat BPM",
|
| 437 |
+
audio_texture="warm and atmospheric",
|
| 438 |
+
culture_or_season=None,
|
| 439 |
+
time_of_day=None,
|
| 440 |
+
activity_context=None,
|
| 441 |
+
reference_artists=[]
|
| 442 |
+
)
|
| 443 |
+
|
| 444 |
+
def _parse_album_response(self, response_content: str) -> Album:
|
| 445 |
+
"""Parse LLM JSON response into Album object"""
|
| 446 |
+
import json
|
| 447 |
+
import re
|
| 448 |
+
|
| 449 |
+
try:
|
| 450 |
+
# Extract JSON from response
|
| 451 |
+
json_match = re.search(r'\{.*\}', response_content, re.DOTALL)
|
| 452 |
+
if json_match:
|
| 453 |
+
json_str = json_match.group()
|
| 454 |
+
data = json.loads(json_str)
|
| 455 |
+
|
| 456 |
+
songs = []
|
| 457 |
+
for song_data in data.get("songs", []):
|
| 458 |
+
song = SunoPrompt(
|
| 459 |
+
song_name=song_data.get("song_name", "Untitled"),
|
| 460 |
+
genre=song_data.get("genre"),
|
| 461 |
+
song_prompt=song_data.get("song_prompt"),
|
| 462 |
+
# tags=song_data.get("tags", ["lofi", "chill"]),
|
| 463 |
+
# duration_hint=song_data.get("duration_hint", "2-3 minutes")
|
| 464 |
+
)
|
| 465 |
+
songs.append(song)
|
| 466 |
+
|
| 467 |
+
return Album(
|
| 468 |
+
album_name=data.get("album_name", "Lo-Fi Collection"),
|
| 469 |
+
theme=data.get("theme", "Relaxing music"),
|
| 470 |
+
songs=songs,
|
| 471 |
+
track_count=len(songs)
|
| 472 |
+
)
|
| 473 |
+
else:
|
| 474 |
+
raise ValueError("No JSON found in response")
|
| 475 |
+
|
| 476 |
+
except (json.JSONDecodeError, ValueError):
|
| 477 |
+
# Fallback: create a basic album
|
| 478 |
+
return self._fallback_parse_album(response_content)
|
| 479 |
+
|
| 480 |
+
def _fallback_parse_album(self, content: str) -> Album:
|
| 481 |
+
"""Fallback parser when JSON parsing fails"""
|
| 482 |
+
# Create basic songs from content
|
| 483 |
+
songs = [
|
| 484 |
+
SunoPrompt(
|
| 485 |
+
song_name=f"Lo-Fi Track {i+1}",
|
| 486 |
+
genre="lo-fi hip hop",
|
| 487 |
+
song_prompt=f"A gentle lo-fi track with piano and soft drums, {content[:50]}...",
|
| 488 |
+
# tags=["lofi", "chill", "relax"],
|
| 489 |
+
# duration_hint="2-3 minutes"
|
| 490 |
+
)
|
| 491 |
+
for i in range(self.state["number_of_song"])
|
| 492 |
+
]
|
| 493 |
+
|
| 494 |
+
return Album(
|
| 495 |
+
album_name="Generated Lo-Fi Album",
|
| 496 |
+
theme="Relaxing lo-fi music collection",
|
| 497 |
+
songs=songs,
|
| 498 |
+
track_count=self.state["number_of_song"]
|
| 499 |
+
)
|
| 500 |
+
|
| 501 |
+
def _parse_youtube_response(self, response_content: str) -> List[YouTubeContent]:
|
| 502 |
+
"""Parse LLM JSON response into list of YouTubeContent objects"""
|
| 503 |
+
import json
|
| 504 |
+
import re
|
| 505 |
+
|
| 506 |
+
try:
|
| 507 |
+
# Extract JSON array from response
|
| 508 |
+
json_match = re.search(r'\[.*\]', response_content, re.DOTALL)
|
| 509 |
+
if json_match:
|
| 510 |
+
json_str = json_match.group()
|
| 511 |
+
data = json.loads(json_str)
|
| 512 |
+
|
| 513 |
+
youtube_content = []
|
| 514 |
+
for item in data:
|
| 515 |
+
yt_content = YouTubeContent(
|
| 516 |
+
cover_image_prompt=item.get("cover_image_prompt", "Lo-fi aesthetic artwork"),
|
| 517 |
+
title=item.get("title", "Lo-Fi Music"),
|
| 518 |
+
description=item.get("description", "Relaxing lo-fi beats"),
|
| 519 |
+
tags=item.get("tags", ["lofi", "chill"]),
|
| 520 |
+
thumbnail_elements=item.get("thumbnail_elements", ["music", "aesthetic"])
|
| 521 |
+
)
|
| 522 |
+
youtube_content.append(yt_content)
|
| 523 |
+
|
| 524 |
+
return youtube_content
|
| 525 |
+
else:
|
| 526 |
+
raise ValueError("No JSON array found in response")
|
| 527 |
+
|
| 528 |
+
except (json.JSONDecodeError, ValueError):
|
| 529 |
+
# Fallback: return basic YouTube content
|
| 530 |
+
return self._fallback_parse_youtube(response_content)
|
| 531 |
+
|
| 532 |
+
def _fallback_parse_youtube(self, content: str) -> List[YouTubeContent]:
|
| 533 |
+
"""Fallback parser when JSON parsing fails"""
|
| 534 |
+
# Create basic YouTube content
|
| 535 |
+
return [
|
| 536 |
+
YouTubeContent(
|
| 537 |
+
cover_image_prompt="Aesthetic lo-fi scene with warm lighting and vintage elements",
|
| 538 |
+
title="Lo-Fi Hip Hop Beats | Study & Relaxation Music",
|
| 539 |
+
description="π΅ Relaxing lo-fi hip hop beats perfect for studying, working, or chilling out.\n\n#lofi #chillhop #studymusic #relaxation",
|
| 540 |
+
tags=["lofi", "lo-fi hip hop", "chill beats", "study music", "relaxation"],
|
| 541 |
+
thumbnail_elements=["warm colors", "vintage aesthetic", "musical notes"]
|
| 542 |
+
)
|
| 543 |
+
for _ in range(5) # Default 5 songs
|
| 544 |
+
]
|
| 545 |
+
|
| 546 |
+
def process(self, user_input: str, number_of_song: int) -> State:
|
| 547 |
+
"""Main processing function"""
|
| 548 |
+
initial_state = State(
|
| 549 |
+
user_input=user_input,
|
| 550 |
+
processing_stage="Starting...",
|
| 551 |
+
style_data=None,
|
| 552 |
+
album=None,
|
| 553 |
+
number_of_song=number_of_song,
|
| 554 |
+
youtube_content=[],
|
| 555 |
+
messages=[],
|
| 556 |
+
errors=[],
|
| 557 |
+
metadata={}
|
| 558 |
+
)
|
| 559 |
+
|
| 560 |
+
# Run the graph
|
| 561 |
+
final_state = self.graph.invoke(initial_state)
|
| 562 |
+
return final_state
|
| 563 |
+
|
| 564 |
+
# Gradio Interface
|
| 565 |
+
def create_gradio_interface():
|
| 566 |
+
generator = LoFiSongGenerator()
|
| 567 |
+
|
| 568 |
+
def process_request(user_input, number_of_song, api_key):
|
| 569 |
+
if not api_key.strip():
|
| 570 |
+
return pd.DataFrame(), "", "Please enter your Gemini API key.", None, None
|
| 571 |
+
|
| 572 |
+
if not user_input.strip():
|
| 573 |
+
return pd.DataFrame(), "", "Please enter a style or mood description.", None, None
|
| 574 |
+
|
| 575 |
+
try:
|
| 576 |
+
# Set the API key before processing
|
| 577 |
+
generator.set_api_key(api_key)
|
| 578 |
+
|
| 579 |
+
final_state = generator.process(user_input, number_of_song)
|
| 580 |
+
|
| 581 |
+
# Get CSV outputs from metadata
|
| 582 |
+
album_csv = final_state.get("metadata", {}).get("album_csv", "No album data generated")
|
| 583 |
+
youtube_txt = final_state.get("metadata", {}).get("youtube_txt", "No YouTube data generated")
|
| 584 |
+
|
| 585 |
+
# Get additional info for status
|
| 586 |
+
album_name = final_state.get("metadata", {}).get("album_name", "Unknown")
|
| 587 |
+
total_songs = final_state.get("metadata", {}).get("total_songs", 0)
|
| 588 |
+
status = final_state.get("processing_stage", "Unknown")
|
| 589 |
+
|
| 590 |
+
# Get file paths
|
| 591 |
+
album_csv_file = final_state.get("metadata", {}).get('album_csv_file')
|
| 592 |
+
youtube_txt_file = final_state.get("metadata", {}).get('youtube_txt_file')
|
| 593 |
+
|
| 594 |
+
# Format status with more details
|
| 595 |
+
detailed_status = f"Status: {status}\n"
|
| 596 |
+
detailed_status += f"Album: {album_name}\n"
|
| 597 |
+
detailed_status += f"Total Songs Generated: {total_songs}\n"
|
| 598 |
+
|
| 599 |
+
# Add file paths if available
|
| 600 |
+
if album_csv_file:
|
| 601 |
+
detailed_status += f"Album CSV saved to: {album_csv_file}\n"
|
| 602 |
+
if youtube_txt_file:
|
| 603 |
+
detailed_status += f"YouTube CSV saved to: {youtube_txt_file}\n"
|
| 604 |
+
|
| 605 |
+
# Add any errors
|
| 606 |
+
if final_state.get("errors"):
|
| 607 |
+
detailed_status += f"\nErrors encountered: {', '.join(final_state['errors'])}"
|
| 608 |
+
|
| 609 |
+
# Convert CSV string to DataFrame for Gradio Dataframe component
|
| 610 |
+
import pandas as pd
|
| 611 |
+
import io
|
| 612 |
+
|
| 613 |
+
# Parse the CSV string into a DataFrame
|
| 614 |
+
df = pd.read_csv(io.StringIO(album_csv))
|
| 615 |
+
|
| 616 |
+
# Return the DataFrame and other outputs
|
| 617 |
+
return df, youtube_txt, detailed_status, album_csv_file, youtube_txt_file
|
| 618 |
+
|
| 619 |
+
except Exception as e:
|
| 620 |
+
return pd.DataFrame(), "", f"Error: {str(e)}", None, None
|
| 621 |
+
|
| 622 |
+
# Create Gradio interface
|
| 623 |
+
def make_interface():
|
| 624 |
+
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 625 |
+
gr.Markdown("# π΅ Lo-Fi Song Generator")
|
| 626 |
+
gr.Markdown("Generate Suno lo-fi prompts with YouTube-ready content using AI agents!")
|
| 627 |
+
|
| 628 |
+
with gr.Column():
|
| 629 |
+
api_key = gr.Textbox(
|
| 630 |
+
label="Gemini API Key",
|
| 631 |
+
placeholder="Enter your Gemini API key here",
|
| 632 |
+
type="password",
|
| 633 |
+
info="Get your API key from https://makersuite.google.com/app/apikey"
|
| 634 |
+
)
|
| 635 |
+
user_input = gr.Textbox(
|
| 636 |
+
label="Style or Mood Input",
|
| 637 |
+
placeholder="Enter the style, mood, or theme you want (e.g., 'nostalgic Japanese summer evening', 'cozy winter study session', 'dreamy midnight vibes')",
|
| 638 |
+
lines=3
|
| 639 |
+
)
|
| 640 |
+
num_songs = gr.Slider(minimum=1, maximum=30, value=3, step=1, label="Number of Songs")
|
| 641 |
+
|
| 642 |
+
generate_btn = gr.Button("Generate Lo-fi Album")
|
| 643 |
+
|
| 644 |
+
gr.Markdown("### π Examples")
|
| 645 |
+
gr.Examples(
|
| 646 |
+
examples=[
|
| 647 |
+
["Nostalgic Japanese summer evening with cicadas and gentle rain"],
|
| 648 |
+
["Cozy winter study session with warm piano and crackling fireplace"],
|
| 649 |
+
["Dreamy midnight cityscape with neon lights and soft jazz"],
|
| 650 |
+
["Autumn morning coffee shop vibes with acoustic guitar"],
|
| 651 |
+
["Peaceful forest walk with birds chirping and gentle breeze"]
|
| 652 |
+
],
|
| 653 |
+
inputs=user_input
|
| 654 |
+
)
|
| 655 |
+
|
| 656 |
+
gr.Markdown("### πΌ Album Content")
|
| 657 |
+
album_output = gr.Dataframe(
|
| 658 |
+
label="Album/Songs Output",
|
| 659 |
+
headers=["Track", "Title", "Genre", "Suno AI Prompt"],
|
| 660 |
+
row_count=15,
|
| 661 |
+
col_count=(4, "fixed"),
|
| 662 |
+
interactive=False,
|
| 663 |
+
wrap=True
|
| 664 |
+
)
|
| 665 |
+
|
| 666 |
+
gr.Markdown("### πΊ YouTube Metadata")
|
| 667 |
+
youtube_output = gr.Textbox(
|
| 668 |
+
label="YouTube Content Output",
|
| 669 |
+
lines=15,
|
| 670 |
+
max_lines=25,
|
| 671 |
+
info="Contains YouTube titles, descriptions, tags, and cover art prompts"
|
| 672 |
+
)
|
| 673 |
+
|
| 674 |
+
gr.Markdown("### βοΈ Status & Logs")
|
| 675 |
+
status_output = gr.Textbox(
|
| 676 |
+
label="Processing Status & Details",
|
| 677 |
+
lines=5,
|
| 678 |
+
max_lines=15,
|
| 679 |
+
info="Shows processing status, file paths, and any errors"
|
| 680 |
+
)
|
| 681 |
+
|
| 682 |
+
with gr.Row():
|
| 683 |
+
csv_output = gr.File(
|
| 684 |
+
label="Download Album CSV",
|
| 685 |
+
file_types=[".csv"],
|
| 686 |
+
type="filepath",
|
| 687 |
+
interactive=False
|
| 688 |
+
)
|
| 689 |
+
txt_output = gr.File(
|
| 690 |
+
label="Download YouTube TXT",
|
| 691 |
+
file_types=[".txt"],
|
| 692 |
+
type="filepath",
|
| 693 |
+
interactive=False
|
| 694 |
+
)
|
| 695 |
+
|
| 696 |
+
generate_btn.click(
|
| 697 |
+
fn=process_request,
|
| 698 |
+
inputs=[user_input, num_songs, api_key],
|
| 699 |
+
outputs=[album_output, youtube_output, status_output, csv_output, txt_output]
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
return demo
|
| 703 |
+
|
| 704 |
+
interface = make_interface()
|
| 705 |
+
|
| 706 |
+
return interface
|
| 707 |
+
|
| 708 |
+
# Main execution
|
| 709 |
+
if __name__ == "__main__":
|
| 710 |
+
# Create and launch the Gradio interface
|
| 711 |
+
interface = create_gradio_interface()
|
| 712 |
+
interface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
langgraph>=0.0.15
|
| 2 |
+
langchain-google-genai>=0.0.5
|
| 3 |
+
langchain-core>=0.1.10
|
| 4 |
+
pandas>=2.0.0
|
| 5 |
+
gradio>=4.0.0
|
| 6 |
+
pydantic>=2.0.0
|