Spaces:
Sleeping
Sleeping
File size: 9,583 Bytes
ba71fca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import os
import time
from pathlib import Path
from typing import List, Dict, Any, Optional
import chromadb
from sentence_transformers import SentenceTransformer
import PyPDF2
import fitz # PyMuPDF
from langchain_text_splitters import CharacterTextSplitter
from config import settings
class RAGSystem:
"""
Robust RAG (Retrieval-Augmented Generation) System.
All paths, collection, and model names are configurable via config.settings.
Emoji are used in logs for user feedback.
"""
def __init__(
self,
knowledge_base_path: str = None,
collection_name: str = None,
chunk_size: int = 1000,
chunk_overlap: int = 200,
db_path: str = None,
embedding_model_name: str = None
):
# Use config if not provided
self.knowledge_base_path = Path(knowledge_base_path or settings.KNOWLEDGE_BASE_PATH)
self.collection_name = collection_name or settings.COLLECTION_NAME
self.chunk_size = chunk_size
self.chunk_overlap = chunk_overlap
self.db_path = str(db_path or settings.EMBEDDING_PATH)
self.embedding_model_name = embedding_model_name or settings.EMBEDDING_MODEL_NAME
print(f"๐ Loading embedding model: {self.embedding_model_name}")
self.embedding_model = SentenceTransformer(self.embedding_model_name)
self.embedding_dimension = len(self.embedding_model.encode(["test"], convert_to_tensor=False)[0])
print(f"๐ Model dimension: {self.embedding_dimension}")
print("๐ Initializing ChromaDB...")
self.chroma_client = chromadb.PersistentClient(path=self.db_path)
self.collection = self._get_or_create_collection()
print(f"โ
Robust RAG System initialized!")
def _get_or_create_collection(self):
"""Check if collection exists and is compatible, otherwise recreate."""
try:
colls = self.chroma_client.list_collections()
col_exists = any(c.name == self.collection_name for c in colls)
if col_exists:
col = self.chroma_client.get_collection(self.collection_name)
if col.count() > 0:
try:
test_vec = self.embedding_model.encode(["test"], convert_to_tensor=False)[0].tolist()
col.query(query_embeddings=[test_vec], n_results=1)
print("โ
Existing collection is compatible.")
return col
except Exception as e:
if "dimension" in str(e).lower():
print(f"โ ๏ธ Dimension mismatch: {e}")
print("๐๏ธ Recreating collection...")
self.chroma_client.delete_collection(self.collection_name)
# Create new collection
print("๐ Creating new collection...")
return self.chroma_client.get_or_create_collection(
name=self.collection_name,
metadata={
"hnsw:space": "cosine",
"model_name": self.embedding_model_name,
"dimension": self.embedding_dimension
}
)
except Exception as e:
print(f"โ Error managing collection: {e}")
raise
def build_knowledge_base(self) -> None:
"""Create knowledge base from source files."""
print("๐ Building knowledge base...")
start = time.time()
self.clear_database()
chunks = self._process_documents()
if not chunks:
print("โ No documents processed!")
return
self._create_and_save_embeddings(chunks)
print(f"๐ Knowledge base built in {time.time() - start:.2f}s!")
self.show_database_stats()
def _process_documents(self) -> List[Dict[str, Any]]:
if not self.knowledge_base_path.exists():
print(f"โ Knowledge base not found: {self.knowledge_base_path}")
return []
chunks = []
exts = ['.md', '.txt', '.pdf']
for root, _, files in os.walk(self.knowledge_base_path):
root_path = Path(root)
category = root_path.relative_to(self.knowledge_base_path).parts[0] if root_path != self.knowledge_base_path else "root"
for file in files:
file_path = root_path / file
if file_path.suffix.lower() in exts:
content = self._read_file_content(file_path)
if content:
chunks += self._create_chunks_from_text(content, str(file_path), category, file_path.name)
print(f"โ
Processed {file_path.name}: {len(chunks)} chunks (running total)")
print(f"๐ Total chunks created: {len(chunks)}")
return chunks
def _create_and_save_embeddings(self, chunks: List[Dict[str, Any]]) -> None:
texts = [c['text'] for c in chunks]
ids = [c['id'] for c in chunks]
metas = [c['metadata'] for c in chunks]
print(f"๐ฎ Generating embeddings for {len(texts)} chunks...")
embeddings = self.embedding_model.encode(texts, batch_size=16, show_progress_bar=True, convert_to_tensor=False)
assert len(embeddings[0]) == self.embedding_dimension, "Embedding dimension mismatch"
print("๐พ Saving to ChromaDB...")
self.collection.add(
embeddings=[e.tolist() if hasattr(e, "tolist") else list(e) for e in embeddings],
documents=texts,
metadatas=metas,
ids=ids
)
print("โ
Saved to ChromaDB!")
def _read_file_content(self, file_path: Path) -> str:
try:
if file_path.suffix.lower() == '.pdf':
try:
with fitz.open(str(file_path)) as doc:
return "".join(page.get_text() for page in doc)
except Exception:
with open(file_path, 'rb') as f:
reader = PyPDF2.PdfReader(f)
return "".join(page.extract_text() for page in reader.pages)
else:
for enc in ['utf-8', 'utf-8-sig', 'cp874', 'latin-1']:
try:
with open(file_path, 'r', encoding=enc) as f:
return f.read()
except Exception:
continue
except Exception as e:
print(f"โ Error reading {file_path.name}: {e}")
return ""
def _create_chunks_from_text(self, text: str, source: str, category: str, filename: str) -> List[Dict[str, Any]]:
splitter = CharacterTextSplitter(
separator="---",
chunk_size=self.chunk_size,
chunk_overlap=self.chunk_overlap,
length_function=len,
is_separator_regex=False,
)
chunks_text = splitter.split_text(text)
return [
{
'id': f"{category}_{Path(filename).stem}_{i}",
'text': chunk.strip(),
'metadata': {
'source': source,
'category': category,
'chunk_id': f"{category}_{Path(filename).stem}_{i}",
'chunk_number': i,
'filename': filename
}
}
for i, chunk in enumerate(chunks_text)
]
def query(self, query_text: str, top_k: int = 5, category_filter: Optional[str] = None) -> str:
print(f"๐ Querying: '{query_text[:50]}...'")
query_embedding = self.embedding_model.encode([query_text], convert_to_tensor=False)[0]
where_clause = {"category": category_filter} if category_filter else None
results = self.collection.query(
query_embeddings=[query_embedding.tolist() if hasattr(query_embedding, "tolist") else list(query_embedding)],
n_results=top_k,
where=where_clause
)
if not results['documents'][0]:
return "No relevant information found."
return "\n---\n".join(
f"[Context {i+1}]\nSource: {m['filename']} (Category: {m['category']})\nContent: {doc.strip()}\n"
for i, (doc, m) in enumerate(zip(results['documents'][0], results['metadatas'][0]))
)
def show_database_stats(self) -> None:
try:
count = self.collection.count()
meta = self.collection.metadata
print(f"\n๐ Database Stats:")
print(f" Total chunks: {count}")
print(f" Model: {meta.get('model_name', 'Unknown')}")
print(f" Dimension: {meta.get('dimension', 'Unknown')}")
if count > 0:
all_results = self.collection.get()
categories = {}
for m in all_results['metadatas']:
categories[m['category']] = categories.get(m['category'], 0) + 1
print(f" Categories: {len(categories)}")
except Exception as e:
print(f"โ Error getting stats: {e}")
def clear_database(self) -> None:
print("๐๏ธ Clearing database...")
try:
self.chroma_client.delete_collection(self.collection_name)
self.collection = self._get_or_create_collection()
print("โ
Database cleared!")
except Exception as e:
print(f"โ Error clearing database: {e}")
if __name__ == "__main__":
rag = RAGSystem() # Uses config.settings by default
rag.build_knowledge_base() |