Spaces:
Paused
Paused
Create LightOCR_ClinicalNER_Test
Browse files- LightOCR_ClinicalNER_Test +356 -0
LightOCR_ClinicalNER_Test
ADDED
|
@@ -0,0 +1,356 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
import subprocess
|
| 3 |
+
import sys
|
| 4 |
+
import threading
|
| 5 |
+
|
| 6 |
+
import spaces
|
| 7 |
+
import torch
|
| 8 |
+
|
| 9 |
+
import gradio as gr
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from io import BytesIO
|
| 12 |
+
import pypdfium2 as pdfium
|
| 13 |
+
from transformers import (
|
| 14 |
+
LightOnOCRForConditionalGeneration,
|
| 15 |
+
LightOnOCRProcessor,
|
| 16 |
+
TextIteratorStreamer,
|
| 17 |
+
)
|
| 18 |
+
|
| 19 |
+
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
|
| 20 |
+
|
| 21 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 22 |
+
|
| 23 |
+
# Choose best attention implementation based on device
|
| 24 |
+
if device == "cuda":
|
| 25 |
+
attn_implementation = "sdpa"
|
| 26 |
+
dtype = torch.bfloat16
|
| 27 |
+
print("Using sdpa for GPU")
|
| 28 |
+
else:
|
| 29 |
+
attn_implementation = "eager" # Best for CPU
|
| 30 |
+
dtype = torch.float32
|
| 31 |
+
print("Using eager attention for CPU")
|
| 32 |
+
|
| 33 |
+
# Initialize the LightOnOCR model and processor
|
| 34 |
+
print(f"Loading model on {device} with {attn_implementation} attention...")
|
| 35 |
+
model = LightOnOCRForConditionalGeneration.from_pretrained(
|
| 36 |
+
"lightonai/LightOnOCR-1B-1025",
|
| 37 |
+
attn_implementation=attn_implementation,
|
| 38 |
+
torch_dtype=dtype,
|
| 39 |
+
trust_remote_code=True
|
| 40 |
+
).to(device).eval()
|
| 41 |
+
|
| 42 |
+
processor = LightOnOCRProcessor.from_pretrained(
|
| 43 |
+
"lightonai/LightOnOCR-1B-1025",
|
| 44 |
+
trust_remote_code=True
|
| 45 |
+
)
|
| 46 |
+
print("Model loaded successfully!")
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
def render_pdf_page(page, max_resolution=1540, scale=2.77):
|
| 50 |
+
"""Render a PDF page to PIL Image."""
|
| 51 |
+
width, height = page.get_size()
|
| 52 |
+
pixel_width = width * scale
|
| 53 |
+
pixel_height = height * scale
|
| 54 |
+
resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
|
| 55 |
+
target_scale = scale * resize_factor
|
| 56 |
+
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def process_pdf(pdf_path, page_num=1):
|
| 60 |
+
"""Extract a specific page from PDF."""
|
| 61 |
+
pdf = pdfium.PdfDocument(pdf_path)
|
| 62 |
+
total_pages = len(pdf)
|
| 63 |
+
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
|
| 64 |
+
|
| 65 |
+
page = pdf[page_idx]
|
| 66 |
+
img = render_pdf_page(page)
|
| 67 |
+
|
| 68 |
+
pdf.close()
|
| 69 |
+
return img, total_pages, page_idx + 1
|
| 70 |
+
|
| 71 |
+
|
| 72 |
+
def clean_output_text(text):
|
| 73 |
+
"""Remove chat template artifacts from output."""
|
| 74 |
+
# Remove common chat template markers
|
| 75 |
+
markers_to_remove = ["system", "user", "assistant"]
|
| 76 |
+
|
| 77 |
+
# Split by lines and filter
|
| 78 |
+
lines = text.split('\n')
|
| 79 |
+
cleaned_lines = []
|
| 80 |
+
|
| 81 |
+
for line in lines:
|
| 82 |
+
stripped = line.strip()
|
| 83 |
+
# Skip lines that are just template markers
|
| 84 |
+
if stripped.lower() not in markers_to_remove:
|
| 85 |
+
cleaned_lines.append(line)
|
| 86 |
+
|
| 87 |
+
# Join back and strip leading/trailing whitespace
|
| 88 |
+
cleaned = '\n'.join(cleaned_lines).strip()
|
| 89 |
+
|
| 90 |
+
# Alternative approach: if there's an "assistant" marker, take everything after it
|
| 91 |
+
if "assistant" in text.lower():
|
| 92 |
+
parts = text.split("assistant", 1)
|
| 93 |
+
if len(parts) > 1:
|
| 94 |
+
cleaned = parts[1].strip()
|
| 95 |
+
|
| 96 |
+
return cleaned
|
| 97 |
+
|
| 98 |
+
|
| 99 |
+
@spaces.GPU
|
| 100 |
+
def extract_text_from_image(image, temperature=0.2, stream=False):
|
| 101 |
+
"""Extract text from image using LightOnOCR model."""
|
| 102 |
+
# Prepare the chat format
|
| 103 |
+
chat = [
|
| 104 |
+
{
|
| 105 |
+
"role": "user",
|
| 106 |
+
"content": [
|
| 107 |
+
{"type": "image", "url": image},
|
| 108 |
+
],
|
| 109 |
+
}
|
| 110 |
+
]
|
| 111 |
+
|
| 112 |
+
# Apply chat template and tokenize
|
| 113 |
+
inputs = processor.apply_chat_template(
|
| 114 |
+
chat,
|
| 115 |
+
add_generation_prompt=True,
|
| 116 |
+
tokenize=True,
|
| 117 |
+
return_dict=True,
|
| 118 |
+
return_tensors="pt"
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
# Move inputs to device AND convert to the correct dtype
|
| 122 |
+
inputs = {
|
| 123 |
+
k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
|
| 124 |
+
else v.to(device) if isinstance(v, torch.Tensor)
|
| 125 |
+
else v
|
| 126 |
+
for k, v in inputs.items()
|
| 127 |
+
}
|
| 128 |
+
|
| 129 |
+
generation_kwargs = dict(
|
| 130 |
+
**inputs,
|
| 131 |
+
max_new_tokens=2048,
|
| 132 |
+
temperature=temperature if temperature > 0 else 0.0,
|
| 133 |
+
use_cache=True,
|
| 134 |
+
do_sample=temperature > 0,
|
| 135 |
+
)
|
| 136 |
+
|
| 137 |
+
if stream:
|
| 138 |
+
# Setup streamer for streaming generation
|
| 139 |
+
streamer = TextIteratorStreamer(
|
| 140 |
+
processor.tokenizer,
|
| 141 |
+
skip_prompt=True,
|
| 142 |
+
skip_special_tokens=True
|
| 143 |
+
)
|
| 144 |
+
generation_kwargs["streamer"] = streamer
|
| 145 |
+
|
| 146 |
+
# Run generation in a separate thread
|
| 147 |
+
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
|
| 148 |
+
thread.start()
|
| 149 |
+
|
| 150 |
+
# Yield chunks as they arrive
|
| 151 |
+
full_text = ""
|
| 152 |
+
for new_text in streamer:
|
| 153 |
+
full_text += new_text
|
| 154 |
+
# Clean the accumulated text
|
| 155 |
+
cleaned_text = clean_output_text(full_text)
|
| 156 |
+
yield cleaned_text
|
| 157 |
+
|
| 158 |
+
thread.join()
|
| 159 |
+
else:
|
| 160 |
+
# Non-streaming generation
|
| 161 |
+
with torch.no_grad():
|
| 162 |
+
outputs = model.generate(**generation_kwargs)
|
| 163 |
+
|
| 164 |
+
# Decode the output
|
| 165 |
+
output_text = processor.decode(outputs[0], skip_special_tokens=True)
|
| 166 |
+
|
| 167 |
+
# Clean the output
|
| 168 |
+
cleaned_text = clean_output_text(output_text)
|
| 169 |
+
|
| 170 |
+
######### clinical NER ##############
|
| 171 |
+
|
| 172 |
+
tokenizer = AutoTokenizer.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 173 |
+
model = AutoModelForTokenClassification.from_pretrained("samrawal/bert-base-uncased_clinical-ner")
|
| 174 |
+
ner = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
Clinical NER process
|
| 178 |
+
entities = ner(cleaned_text)
|
| 179 |
+
medications = []
|
| 180 |
+
for ent in entities:
|
| 181 |
+
if ent["entity_group"] == "treatment":
|
| 182 |
+
word = ent["word"]
|
| 183 |
+
if word.startswith("##") and medications:
|
| 184 |
+
medications[-1] += word[2:]
|
| 185 |
+
else:
|
| 186 |
+
medications.append(word)
|
| 187 |
+
medications_str = ", ".join(set(medications)) if medications else "None detected"
|
| 188 |
+
|
| 189 |
+
yield cleaned_text
|
| 190 |
+
yield medications_s
|
| 191 |
+
|
| 192 |
+
|
| 193 |
+
|
| 194 |
+
|
| 195 |
+
def process_input(file_input, temperature, page_num, enable_streaming):
|
| 196 |
+
"""Process uploaded file (image or PDF) and extract text with optional streaming."""
|
| 197 |
+
if file_input is None:
|
| 198 |
+
yield "Please upload an image or PDF first.", "", "", None, gr.update()
|
| 199 |
+
return
|
| 200 |
+
|
| 201 |
+
image_to_process = None
|
| 202 |
+
page_info = ""
|
| 203 |
+
|
| 204 |
+
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 205 |
+
|
| 206 |
+
# Handle PDF files
|
| 207 |
+
if file_path.lower().endswith('.pdf'):
|
| 208 |
+
try:
|
| 209 |
+
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
|
| 210 |
+
page_info = f"Processing page {actual_page} of {total_pages}"
|
| 211 |
+
except Exception as e:
|
| 212 |
+
yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
|
| 213 |
+
return
|
| 214 |
+
# Handle image files
|
| 215 |
+
else:
|
| 216 |
+
try:
|
| 217 |
+
image_to_process = Image.open(file_path)
|
| 218 |
+
page_info = "Processing image"
|
| 219 |
+
except Exception as e:
|
| 220 |
+
yield f"Error opening image: {str(e)}", "", "", None, gr.update()
|
| 221 |
+
return
|
| 222 |
+
|
| 223 |
+
try:
|
| 224 |
+
# Extract text using LightOnOCR with optional streaming
|
| 225 |
+
for extracted_text, medications in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
|
| 226 |
+
yield extracted_text, medications, page_info, image_to_process, gr.update()
|
| 227 |
+
|
| 228 |
+
except Exception as e:
|
| 229 |
+
error_msg = f"Error during text extraction: {str(e)}"
|
| 230 |
+
yield error_msg, error_msg, page_info, image_to_process, gr.update()
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
def update_slider(file_input):
|
| 234 |
+
"""Update page slider based on PDF page count."""
|
| 235 |
+
if file_input is None:
|
| 236 |
+
return gr.update(maximum=20, value=1)
|
| 237 |
+
|
| 238 |
+
file_path = file_input if isinstance(file_input, str) else file_input.name
|
| 239 |
+
|
| 240 |
+
if file_path.lower().endswith('.pdf'):
|
| 241 |
+
try:
|
| 242 |
+
pdf = pdfium.PdfDocument(file_path)
|
| 243 |
+
total_pages = len(pdf)
|
| 244 |
+
pdf.close()
|
| 245 |
+
return gr.update(maximum=total_pages, value=1)
|
| 246 |
+
except:
|
| 247 |
+
return gr.update(maximum=20, value=1)
|
| 248 |
+
else:
|
| 249 |
+
return gr.update(maximum=1, value=1)
|
| 250 |
+
|
| 251 |
+
|
| 252 |
+
# Create Gradio interface
|
| 253 |
+
with gr.Blocks(title="๐ Image/PDF OCR with LightOnOCR", theme=gr.themes.Soft()) as demo:
|
| 254 |
+
gr.Markdown(f"""
|
| 255 |
+
# ๐ Image/PDF to Text Extraction with LightOnOCR
|
| 256 |
+
|
| 257 |
+
**๐ก How to use:**
|
| 258 |
+
1. Upload an image or PDF
|
| 259 |
+
2. For PDFs: select which page to extract (1-20)
|
| 260 |
+
3. Adjust temperature if needed
|
| 261 |
+
4. Click "Extract Text"
|
| 262 |
+
|
| 263 |
+
**Note:** The Markdown rendering for tables may not always be perfect. Check the raw output for complex tables!
|
| 264 |
+
|
| 265 |
+
**Model:** LightOnOCR-1B-1025 by LightOn AI
|
| 266 |
+
**Device:** {device.upper()}
|
| 267 |
+
**Attention:** {attn_implementation}
|
| 268 |
+
""")
|
| 269 |
+
|
| 270 |
+
with gr.Row():
|
| 271 |
+
with gr.Column(scale=1):
|
| 272 |
+
file_input = gr.File(
|
| 273 |
+
label="๐ผ๏ธ Upload Image or PDF",
|
| 274 |
+
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
|
| 275 |
+
type="filepath"
|
| 276 |
+
)
|
| 277 |
+
rendered_image = gr.Image(
|
| 278 |
+
label="๐ Preview",
|
| 279 |
+
type="pil",
|
| 280 |
+
height=400,
|
| 281 |
+
interactive=False
|
| 282 |
+
)
|
| 283 |
+
num_pages = gr.Slider(
|
| 284 |
+
minimum=1,
|
| 285 |
+
maximum=20,
|
| 286 |
+
value=1,
|
| 287 |
+
step=1,
|
| 288 |
+
label="PDF: Page Number",
|
| 289 |
+
info="Select which page to extract"
|
| 290 |
+
)
|
| 291 |
+
page_info = gr.Textbox(
|
| 292 |
+
label="Processing Info",
|
| 293 |
+
value="",
|
| 294 |
+
interactive=False
|
| 295 |
+
)
|
| 296 |
+
temperature = gr.Slider(
|
| 297 |
+
minimum=0.0,
|
| 298 |
+
maximum=1.0,
|
| 299 |
+
value=0.2,
|
| 300 |
+
step=0.05,
|
| 301 |
+
label="Temperature",
|
| 302 |
+
info="0.0 = deterministic, Higher = more varied"
|
| 303 |
+
)
|
| 304 |
+
enable_streaming = gr.Checkbox(
|
| 305 |
+
label="Enable Streaming",
|
| 306 |
+
value=True,
|
| 307 |
+
info="Show text progressively as it's generated"
|
| 308 |
+
)
|
| 309 |
+
submit_btn = gr.Button("Extract Text", variant="primary")
|
| 310 |
+
clear_btn = gr.Button("Clear", variant="secondary")
|
| 311 |
+
|
| 312 |
+
with gr.Column(scale=2):
|
| 313 |
+
output_text = gr.Markdown(
|
| 314 |
+
label="๐ Extracted Text (Rendered)",
|
| 315 |
+
value="*Extracted text will appear here...*"
|
| 316 |
+
)
|
| 317 |
+
medications_output = gr.Textbox(
|
| 318 |
+
label="๐ Extracted Medicines/Drugs",
|
| 319 |
+
placeholder="Medicine/drug names will appear here...",
|
| 320 |
+
lines=2,
|
| 321 |
+
max_lines=5,
|
| 322 |
+
interactive=False,
|
| 323 |
+
show_copy_button=True
|
| 324 |
+
)
|
| 325 |
+
|
| 326 |
+
with gr.Row():
|
| 327 |
+
with gr.Column():
|
| 328 |
+
raw_output = gr.Textbox(
|
| 329 |
+
label="Raw Markdown Output",
|
| 330 |
+
placeholder="Raw text will appear here...",
|
| 331 |
+
lines=20,
|
| 332 |
+
max_lines=30,
|
| 333 |
+
show_copy_button=True
|
| 334 |
+
)
|
| 335 |
+
|
| 336 |
+
# Event handlers
|
| 337 |
+
submit_btn.click(
|
| 338 |
+
fn=process_input,
|
| 339 |
+
inputs=[file_input, temperature, num_pages, enable_streaming],
|
| 340 |
+
outputs=[output_text, medications_output, raw_output, page_info, rendered_image, num_pages]
|
| 341 |
+
)
|
| 342 |
+
|
| 343 |
+
file_input.change(
|
| 344 |
+
fn=update_slider,
|
| 345 |
+
inputs=[file_input],
|
| 346 |
+
outputs=[num_pages]
|
| 347 |
+
)
|
| 348 |
+
|
| 349 |
+
clear_btn.click(
|
| 350 |
+
fn=lambda: (None, "*Extracted text will appear here...*", "", "", None, 1),
|
| 351 |
+
outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
|
| 352 |
+
)
|
| 353 |
+
|
| 354 |
+
|
| 355 |
+
if __name__ == "__main__":
|
| 356 |
+
demo.launch()
|