File size: 9,994 Bytes
3c814ba
 
 
3654ed1
8392fde
299e18a
3c814ba
8392fde
c1ff3d7
3c814ba
 
 
 
 
 
3654ed1
3c814ba
 
83140b5
 
 
3c814ba
 
 
 
6807791
3c814ba
6807791
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ff3d7
3c814ba
 
83140b5
 
 
 
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1ff3d7
3654ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83140b5
 
 
 
 
 
 
3654ed1
3c814ba
3654ed1
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
299e18a
 
 
 
 
 
3654ed1
 
 
 
 
 
 
 
83140b5
3654ed1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3c814ba
f77150f
83140b5
3c814ba
3654ed1
 
3c814ba
 
 
 
 
 
 
 
 
3654ed1
 
3c814ba
 
 
 
 
 
3654ed1
 
3c814ba
f77150f
83140b5
 
 
3c814ba
 
3654ed1
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83140b5
 
3c814ba
83140b5
3c814ba
 
 
83140b5
f77150f
83140b5
3c814ba
83140b5
3c814ba
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f77150f
 
e8a76f0
f77150f
 
83140b5
3c814ba
 
 
83140b5
 
3c814ba
 
 
 
83140b5
 
3c814ba
 
 
 
 
 
 
f77150f
3c814ba
 
 
 
 
 
 
 
83140b5
3c814ba
 
c1ff3d7
 
83140b5
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
#!/usr/bin/env python3
import subprocess
import sys
import threading

import spaces
import torch

import gradio as gr
from PIL import Image
from io import BytesIO
import pypdfium2 as pdfium
from transformers import (
    LightOnOCRForConditionalGeneration,
    LightOnOCRProcessor,
    TextIteratorStreamer,
)

# ---- CLINICAL NER IMPORTS ----
import spacy

device = "cuda" if torch.cuda.is_available() else "cpu"

# Choose best attention implementation based on device
if device == "cuda":
    attn_implementation = "sdpa"  
    dtype = torch.bfloat16
    print("Using sdpa for GPU")
else:
    attn_implementation = "eager"  # Best for CPU
    dtype = torch.float32
    print("Using eager attention for CPU")

# Initialize the LightOnOCR model and processor
print(f"Loading model on {device} with {attn_implementation} attention...")
model = LightOnOCRForConditionalGeneration.from_pretrained(
    "lightonai/LightOnOCR-1B-1025",
    attn_implementation=attn_implementation,
    torch_dtype=dtype,
    trust_remote_code=True
).to(device).eval()

processor = LightOnOCRProcessor.from_pretrained(
    "lightonai/LightOnOCR-1B-1025",
    trust_remote_code=True
)
print("Model loaded successfully!")

# ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
print("Loading clinical NER model (bc5cdr)...")
nlp_ner = spacy.load("en_ner_bc5cdr_md")
print("Clinical NER loaded.")

def render_pdf_page(page, max_resolution=1540, scale=2.77):
    """Render a PDF page to PIL Image."""
    width, height = page.get_size()
    pixel_width = width * scale
    pixel_height = height * scale
    resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
    target_scale = scale * resize_factor
    return page.render(scale=target_scale, rev_byteorder=True).to_pil()


def process_pdf(pdf_path, page_num=1):
    """Extract a specific page from PDF."""
    pdf = pdfium.PdfDocument(pdf_path)
    total_pages = len(pdf)
    page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
    
    page = pdf[page_idx]
    img = render_pdf_page(page)
    
    pdf.close()
    return img, total_pages, page_idx + 1


def clean_output_text(text):
    """Remove chat template artifacts from output."""
    markers_to_remove = ["system", "user", "assistant"]
    lines = text.split('\n')
    cleaned_lines = []
    for line in lines:
        stripped = line.strip()
        # Skip lines that are just template markers
        if stripped.lower() not in markers_to_remove:
            cleaned_lines.append(line)
    cleaned = '\n'.join(cleaned_lines).strip()
    if "assistant" in text.lower():
        parts = text.split("assistant", 1)
        if len(parts) > 1:
            cleaned = parts[1].strip()
    return cleaned

def extract_medication_names(text):
    """Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
    doc = nlp_ner(text)
    meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
    meds_unique = list(dict.fromkeys(meds))
    return meds_unique


@spaces.GPU
def extract_text_from_image(image, temperature=0.2, stream=False):
    """Extract text from image using LightOnOCR model."""
    chat = [
        {
            "role": "user",
            "content": [
                {"type": "image", "url": image},
            ],
        }
    ]
    inputs = processor.apply_chat_template(
        chat,
        add_generation_prompt=True,
        tokenize=True,
        return_dict=True,
        return_tensors="pt"
    )
    inputs = {
        k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
        else v.to(device) if isinstance(v, torch.Tensor) 
        else v 
        for k, v in inputs.items()
    }
    generation_kwargs = dict(
        **inputs,
        max_new_tokens=2048,
        temperature=temperature if temperature > 0 else 0.0,
        use_cache=True,
        do_sample=temperature > 0,
    )
    if stream:
        # Streaming generation
        streamer = TextIteratorStreamer(
            processor.tokenizer,
            skip_prompt=True,
            skip_special_tokens=True
        )
        generation_kwargs["streamer"] = streamer
        thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
        thread.start()
        full_text = ""
        for new_text in streamer:
            full_text += new_text
            cleaned_text = clean_output_text(full_text)
            yield cleaned_text
        thread.join()
    else:
        # Non-streaming generation
        with torch.no_grad():
            outputs = model.generate(**generation_kwargs)
        output_text = processor.decode(outputs[0], skip_special_tokens=True)
        cleaned_text = clean_output_text(output_text)
        yield cleaned_text

def process_input(file_input, temperature, page_num, enable_streaming):
    """Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
    if file_input is None:
        yield "Please upload an image or PDF first.", "", "", None, gr.update()
        return
    image_to_process = None
    page_info = ""
    file_path = file_input if isinstance(file_input, str) else file_input.name
    # Handle PDF files
    if file_path.lower().endswith('.pdf'):
        try:
            image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
            page_info = f"Processing page {actual_page} of {total_pages}"
        except Exception as e:
            yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
            return
    # Handle image files
    else:
        try:
            image_to_process = Image.open(file_path)
            page_info = "Processing image"
        except Exception as e:
            yield f"Error opening image: {str(e)}", "", "", None, gr.update()
            return
    try:
        for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
            meds = extract_medication_names(extracted_text)
            meds_str = "\n".join(meds) if meds else "No medications found."
            yield meds_str, meds_str, page_info, image_to_process, gr.update()
    except Exception as e:
        error_msg = f"Error during text extraction: {str(e)}"
        yield error_msg, error_msg, page_info, image_to_process, gr.update()

def update_slider(file_input):
    """Update page slider based on PDF page count."""
    if file_input is None:
        return gr.update(maximum=20, value=1)
    file_path = file_input if isinstance(file_input, str) else file_input.name
    if file_path.lower().endswith('.pdf'):
        try:
            pdf = pdfium.PdfDocument(file_path)
            total_pages = len(pdf)
            pdf.close()
            return gr.update(maximum=total_pages, value=1)
        except:
            return gr.update(maximum=20, value=1)
    else:
        return gr.update(maximum=1, value=1)

# ----- GRADIO UI -----
with gr.Blocks(title="📖 Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
    gr.Markdown(f"""
# 📖 Medication Extraction from Image/PDF with LightOnOCR + Clinical NER

**💡 How to use:**
1. Upload an image or PDF
2. For PDFs: select which page to extract
3. Adjust temperature if needed
4. Click "Extract Medications"

**Output:** Only medication names found in text (via NER)

**Model:** LightOnOCR-1B-1025 by LightOn AI  
**Device:** {device.upper()}  
**Attention:** {attn_implementation}
""")
    with gr.Row():
        with gr.Column(scale=1):
            file_input = gr.File(
                label="🖼️ Upload Image or PDF",
                file_types=[".pdf", ".png", ".jpg", ".jpeg"],
                type="filepath"
            )
            rendered_image = gr.Image(
                label="📄 Preview",
                type="pil",
                height=400,
                interactive=False
            )
            num_pages = gr.Slider(
                minimum=1,
                maximum=20,
                value=1,
                step=1,
                label="PDF: Page Number",
                info="Select which page to extract"
            )
            page_info = gr.Textbox(
                label="Processing Info",
                value="",
                interactive=False
            )
            temperature = gr.Slider(
                minimum=0.0,
                maximum=1.0,
                value=0.2,
                step=0.05,
                label="Temperature",
                info="0.0 = deterministic, Higher = more varied"
            )
            enable_streaming = gr.Checkbox(
                label="Enable Streaming",
                value=True,
                info="Show text progressively as it's generated"
            )
            submit_btn = gr.Button("Extract Medications", variant="primary")
            clear_btn = gr.Button("Clear", variant="secondary")
        with gr.Column(scale=2):
            output_text = gr.Markdown(
                label="🩺 Extracted Medication Names",
                value="*Medication names will appear here...*"
            )
    with gr.Row():
        with gr.Column():
            raw_output = gr.Textbox(
                label="Extracted Medication Names (Raw)",
                placeholder="Medication list will appear here...",
                lines=20,
                max_lines=30,
                show_copy_button=True
            )
    # Event handlers
    submit_btn.click(
        fn=process_input,
        inputs=[file_input, temperature, num_pages, enable_streaming],
        outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
    )
    file_input.change(
        fn=update_slider,
        inputs=[file_input],
        outputs=[num_pages]
    )
    clear_btn.click(
        fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
        outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
    )

if __name__ == "__main__":
    demo.launch()