Spaces:
Paused
Paused
File size: 9,994 Bytes
3c814ba 3654ed1 8392fde 299e18a 3c814ba 8392fde c1ff3d7 3c814ba 3654ed1 3c814ba 83140b5 3c814ba 6807791 3c814ba 6807791 3c814ba c1ff3d7 3c814ba 83140b5 3c814ba c1ff3d7 3654ed1 83140b5 3654ed1 3c814ba 3654ed1 3c814ba 299e18a 3654ed1 83140b5 3654ed1 3c814ba f77150f 83140b5 3c814ba 3654ed1 3c814ba 3654ed1 3c814ba 3654ed1 3c814ba f77150f 83140b5 3c814ba 3654ed1 3c814ba 83140b5 3c814ba 83140b5 3c814ba 83140b5 f77150f 83140b5 3c814ba 83140b5 3c814ba f77150f e8a76f0 f77150f 83140b5 3c814ba 83140b5 3c814ba 83140b5 3c814ba f77150f 3c814ba 83140b5 3c814ba c1ff3d7 83140b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 |
#!/usr/bin/env python3
import subprocess
import sys
import threading
import spaces
import torch
import gradio as gr
from PIL import Image
from io import BytesIO
import pypdfium2 as pdfium
from transformers import (
LightOnOCRForConditionalGeneration,
LightOnOCRProcessor,
TextIteratorStreamer,
)
# ---- CLINICAL NER IMPORTS ----
import spacy
device = "cuda" if torch.cuda.is_available() else "cpu"
# Choose best attention implementation based on device
if device == "cuda":
attn_implementation = "sdpa"
dtype = torch.bfloat16
print("Using sdpa for GPU")
else:
attn_implementation = "eager" # Best for CPU
dtype = torch.float32
print("Using eager attention for CPU")
# Initialize the LightOnOCR model and processor
print(f"Loading model on {device} with {attn_implementation} attention...")
model = LightOnOCRForConditionalGeneration.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
attn_implementation=attn_implementation,
torch_dtype=dtype,
trust_remote_code=True
).to(device).eval()
processor = LightOnOCRProcessor.from_pretrained(
"lightonai/LightOnOCR-1B-1025",
trust_remote_code=True
)
print("Model loaded successfully!")
# ---- LOAD CLINICAL NER MODEL (BC5CDR) ----
print("Loading clinical NER model (bc5cdr)...")
nlp_ner = spacy.load("en_ner_bc5cdr_md")
print("Clinical NER loaded.")
def render_pdf_page(page, max_resolution=1540, scale=2.77):
"""Render a PDF page to PIL Image."""
width, height = page.get_size()
pixel_width = width * scale
pixel_height = height * scale
resize_factor = min(1, max_resolution / pixel_width, max_resolution / pixel_height)
target_scale = scale * resize_factor
return page.render(scale=target_scale, rev_byteorder=True).to_pil()
def process_pdf(pdf_path, page_num=1):
"""Extract a specific page from PDF."""
pdf = pdfium.PdfDocument(pdf_path)
total_pages = len(pdf)
page_idx = min(max(int(page_num) - 1, 0), total_pages - 1)
page = pdf[page_idx]
img = render_pdf_page(page)
pdf.close()
return img, total_pages, page_idx + 1
def clean_output_text(text):
"""Remove chat template artifacts from output."""
markers_to_remove = ["system", "user", "assistant"]
lines = text.split('\n')
cleaned_lines = []
for line in lines:
stripped = line.strip()
# Skip lines that are just template markers
if stripped.lower() not in markers_to_remove:
cleaned_lines.append(line)
cleaned = '\n'.join(cleaned_lines).strip()
if "assistant" in text.lower():
parts = text.split("assistant", 1)
if len(parts) > 1:
cleaned = parts[1].strip()
return cleaned
def extract_medication_names(text):
"""Extract medication names using clinical NER (spacy: bc5cdr CHEMICAL)."""
doc = nlp_ner(text)
meds = [ent.text for ent in doc.ents if ent.label_ == "CHEMICAL"]
meds_unique = list(dict.fromkeys(meds))
return meds_unique
@spaces.GPU
def extract_text_from_image(image, temperature=0.2, stream=False):
"""Extract text from image using LightOnOCR model."""
chat = [
{
"role": "user",
"content": [
{"type": "image", "url": image},
],
}
]
inputs = processor.apply_chat_template(
chat,
add_generation_prompt=True,
tokenize=True,
return_dict=True,
return_tensors="pt"
)
inputs = {
k: v.to(device=device, dtype=dtype) if isinstance(v, torch.Tensor) and v.dtype in [torch.float32, torch.float16, torch.bfloat16]
else v.to(device) if isinstance(v, torch.Tensor)
else v
for k, v in inputs.items()
}
generation_kwargs = dict(
**inputs,
max_new_tokens=2048,
temperature=temperature if temperature > 0 else 0.0,
use_cache=True,
do_sample=temperature > 0,
)
if stream:
# Streaming generation
streamer = TextIteratorStreamer(
processor.tokenizer,
skip_prompt=True,
skip_special_tokens=True
)
generation_kwargs["streamer"] = streamer
thread = threading.Thread(target=model.generate, kwargs=generation_kwargs)
thread.start()
full_text = ""
for new_text in streamer:
full_text += new_text
cleaned_text = clean_output_text(full_text)
yield cleaned_text
thread.join()
else:
# Non-streaming generation
with torch.no_grad():
outputs = model.generate(**generation_kwargs)
output_text = processor.decode(outputs[0], skip_special_tokens=True)
cleaned_text = clean_output_text(output_text)
yield cleaned_text
def process_input(file_input, temperature, page_num, enable_streaming):
"""Process uploaded file (image or PDF) and extract medication names via OCR+NER."""
if file_input is None:
yield "Please upload an image or PDF first.", "", "", None, gr.update()
return
image_to_process = None
page_info = ""
file_path = file_input if isinstance(file_input, str) else file_input.name
# Handle PDF files
if file_path.lower().endswith('.pdf'):
try:
image_to_process, total_pages, actual_page = process_pdf(file_path, int(page_num))
page_info = f"Processing page {actual_page} of {total_pages}"
except Exception as e:
yield f"Error processing PDF: {str(e)}", "", "", None, gr.update()
return
# Handle image files
else:
try:
image_to_process = Image.open(file_path)
page_info = "Processing image"
except Exception as e:
yield f"Error opening image: {str(e)}", "", "", None, gr.update()
return
try:
for extracted_text in extract_text_from_image(image_to_process, temperature, stream=enable_streaming):
meds = extract_medication_names(extracted_text)
meds_str = "\n".join(meds) if meds else "No medications found."
yield meds_str, meds_str, page_info, image_to_process, gr.update()
except Exception as e:
error_msg = f"Error during text extraction: {str(e)}"
yield error_msg, error_msg, page_info, image_to_process, gr.update()
def update_slider(file_input):
"""Update page slider based on PDF page count."""
if file_input is None:
return gr.update(maximum=20, value=1)
file_path = file_input if isinstance(file_input, str) else file_input.name
if file_path.lower().endswith('.pdf'):
try:
pdf = pdfium.PdfDocument(file_path)
total_pages = len(pdf)
pdf.close()
return gr.update(maximum=total_pages, value=1)
except:
return gr.update(maximum=20, value=1)
else:
return gr.update(maximum=1, value=1)
# ----- GRADIO UI -----
with gr.Blocks(title="📖 Image/PDF OCR + Clinical NER", theme=gr.themes.Soft()) as demo:
gr.Markdown(f"""
# 📖 Medication Extraction from Image/PDF with LightOnOCR + Clinical NER
**💡 How to use:**
1. Upload an image or PDF
2. For PDFs: select which page to extract
3. Adjust temperature if needed
4. Click "Extract Medications"
**Output:** Only medication names found in text (via NER)
**Model:** LightOnOCR-1B-1025 by LightOn AI
**Device:** {device.upper()}
**Attention:** {attn_implementation}
""")
with gr.Row():
with gr.Column(scale=1):
file_input = gr.File(
label="🖼️ Upload Image or PDF",
file_types=[".pdf", ".png", ".jpg", ".jpeg"],
type="filepath"
)
rendered_image = gr.Image(
label="📄 Preview",
type="pil",
height=400,
interactive=False
)
num_pages = gr.Slider(
minimum=1,
maximum=20,
value=1,
step=1,
label="PDF: Page Number",
info="Select which page to extract"
)
page_info = gr.Textbox(
label="Processing Info",
value="",
interactive=False
)
temperature = gr.Slider(
minimum=0.0,
maximum=1.0,
value=0.2,
step=0.05,
label="Temperature",
info="0.0 = deterministic, Higher = more varied"
)
enable_streaming = gr.Checkbox(
label="Enable Streaming",
value=True,
info="Show text progressively as it's generated"
)
submit_btn = gr.Button("Extract Medications", variant="primary")
clear_btn = gr.Button("Clear", variant="secondary")
with gr.Column(scale=2):
output_text = gr.Markdown(
label="🩺 Extracted Medication Names",
value="*Medication names will appear here...*"
)
with gr.Row():
with gr.Column():
raw_output = gr.Textbox(
label="Extracted Medication Names (Raw)",
placeholder="Medication list will appear here...",
lines=20,
max_lines=30,
show_copy_button=True
)
# Event handlers
submit_btn.click(
fn=process_input,
inputs=[file_input, temperature, num_pages, enable_streaming],
outputs=[output_text, raw_output, page_info, rendered_image, num_pages]
)
file_input.change(
fn=update_slider,
inputs=[file_input],
outputs=[num_pages]
)
clear_btn.click(
fn=lambda: (None, "*Medication names will appear here...*", "", "", None, 1),
outputs=[file_input, output_text, raw_output, page_info, rendered_image, num_pages]
)
if __name__ == "__main__":
demo.launch()
|