""" 2025.11.3 2025.11.2 4.57.1 0.24.0 __UNSLOTH_VERSIONING__ """ # Unsloth auto generated code # Copyright 2023-present Daniel Han-Chen, Michael Han-Chen & the Unsloth team. All rights reserved. # # This program is free software: you can redistribute it and/or modify # it under the terms of the GNU Lesser General Public License as published by # the Free Software Foundation, either version 3 of the License, or # (at your option) any later version. # # This program is distributed in the hope that it will be useful, # but WITHOUT ANY WARRANTY; without even the implied warranty of # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the # GNU General Public License for more details. # # You should have received a copy of the GNU Lesser General Public License # along with this program. If not, see . from torch import Tensor import torch import torch.nn as nn from torch.nn import functional as F from typing import Any, List, Optional, Tuple, Union, Dict, Set, Callable from trl.trainer.nash_md_trainer import (Any, BaseImageProcessor, BasePairwiseJudge, Callable, Dataset, EvalPrediction, F, FeatureExtractionMixin, GeometricMixtureWrapper, IterableDataset, NashMDConfig, NashMDTrainer, OnlineDPOTrainer, OptimizerNames, Optional, PeftModel, PreTrainedModel, PreTrainedTokenizerBase, ProcessorMixin, SIMPLE_CHAT_TEMPLATE, TrainerCallback, Union, empty_cache, get_reward, is_conversational, is_peft_available, jinja2, maybe_apply_chat_template, nn, selective_log_softmax, textwrap, torch, truncate_right, unwrap_model_for_generation) import os from typing import * from dataclasses import dataclass, field from packaging.version import Version import torch import numpy as np from contextlib import nullcontext from torch.nn import functional as F import inspect from transformers import DataCollatorForSeq2Seq, DataCollatorForLanguageModeling as TransformersDataCollatorForLanguageModeling from transformers.training_args import ParallelMode # Wrap trainer with padding to right and enable training mode import functools from types import MethodType def prepare_for_training_mode(f): @functools.wraps(f) def wrapper(self, *args, **kwargs): # Enable training mode if hasattr(self, 'model') and hasattr(self.model, "for_training"): self.model.for_training() output = f(self, *args, **kwargs) # Return inference mode if hasattr(self, 'model') and hasattr(self.model, "for_inference"): self.model.for_inference() return output return wrapper pass torch_compile_options = { "epilogue_fusion" : True, "max_autotune" : False, "shape_padding" : True, "trace.enabled" : False, "triton.cudagraphs" : False, } @torch.compile(dynamic = True, fullgraph = True, options = torch_compile_options,) def chunked_selective_log_softmax(logits, index): # Split into 4 chunks only chunked_logits = torch.chunk(logits.reshape(-1, logits.shape[-1]), chunks = 4, dim = 0) chunked_index = torch.chunk(index.reshape(-1), chunks = 4, dim = 0) all_per_token_logps = [] # Below loop does the same as selective_log_softmax(chunk_logits, chunk_index) for chunk_logits, chunk_index in zip(chunked_logits, chunked_index): chunk_logits = chunk_logits.to(torch.float32) selected_logits = torch.gather(chunk_logits, dim = -1, index = chunk_index.unsqueeze(-1)).squeeze(-1) logsumexp_values = torch.logsumexp(chunk_logits, dim = -1) per_token_logps = selected_logits - logsumexp_values all_per_token_logps.append(per_token_logps) pass all_per_token_logps = torch.concat(all_per_token_logps) all_per_token_logps = all_per_token_logps.reshape((logits.shape[0], logits.shape[1])) return all_per_token_logps def calculate_pad_tokens_in_prompt( input_ids: torch.Tensor, logits_to_keep: int, pad_token_id: int ) -> torch.Tensor: """ Given prompt tensor, it returns all the left padded tokens in that sequence. so [pad, pad, pad, cat] = 3 tokens """ if logits_to_keep >= input_ids.shape[1]: raise ValueError("logits_to_keep must be smaller than the sequence length.") prompt_section = input_ids[:, :-logits_to_keep] padding_mask = (prompt_section == pad_token_id) pad_token_counts = padding_mask.sum(dim=1) return pad_token_counts def create_completion_attention_mask( completion_input_ids: torch.Tensor, left_pad_tokens_per_prompt: torch.Tensor, max_left_pad: int, pad_token_id: int ) -> torch.Tensor: """ Given that we have a sequence, [p,p,p,c,c,c,pad,pad,pad] Where p are extra prompt tokens we got from slicing the torch tensor, c is completion tokens and pad are pad tokens, this function would make a completion mask that would 0 out the pad and p tokens. so in this example [0,0,0,1,1,1,0,0,0] """ batch_size, completion_len = completion_input_ids.shape device = completion_input_ids.device num_tokens_to_mask = max_left_pad - left_pad_tokens_per_prompt indices = torch.arange(completion_len, device=device).unsqueeze(0) shift_mask = indices >= num_tokens_to_mask.unsqueeze(1) non_padding_mask = (completion_input_ids != pad_token_id) final_mask = shift_mask & non_padding_mask return final_mask def left_pack_padding(tensor: torch.Tensor, pad_id: int) -> torch.Tensor: """ Moves all padding tokens in each sequence of a batch to the right. """ mask = (tensor != pad_id) # Must do stable=True since binary mark is unordered sorted_indices = torch.argsort(mask, dim=1, descending=True, stable=True) packed_tensor = torch.gather(tensor, 1, sorted_indices) return packed_tensor def align_logprobs_with_mask( logprob_tensor: torch.Tensor, attention_mask: torch.Tensor, pad_value: float = 0.0 ) -> torch.Tensor: """ Aligns a log probability tensor with a given attention mask. """ device = logprob_tensor.device batch_size, logprob_seq_len = logprob_tensor.shape mask_seq_len = attention_mask.shape[1] padded_logprobs = torch.full( attention_mask.shape, fill_value=pad_value, dtype=logprob_tensor.dtype, device=device ) left_pad_counts = torch.argmax(attention_mask, dim=1) cols = torch.arange(logprob_seq_len, device=device) dest_indices = left_pad_counts.unsqueeze(1) + cols # Create destination row indices # Shape: [batch_size, logprob_seq_len] row_indices = torch.arange(batch_size, device=device).unsqueeze(1).expand_as(dest_indices) # --- 4. Filter out-of-bounds indices and perform assignment --- # Create a mask to identify only the indices that are within the bounds # of the target tensor's sequence length. valid_mask = dest_indices < mask_seq_len # Use this mask to select only the valid row indices, column indices, # and the corresponding values from the logprob tensor. # This flattens the selected elements into 1D tensors. valid_rows = row_indices[valid_mask] valid_cols = dest_indices[valid_mask] valid_vals = logprob_tensor[valid_mask] # Place the valid values into their correct positions in the padded tensor # using a single, efficient advanced indexing operation. padded_logprobs[valid_rows, valid_cols] = valid_vals return padded_logprobs @dataclass class UnslothNashMDConfig(NashMDConfig): """ Configuration class for the [`NashMDTrainer`]. Subclass of [`OnlineDPOConfig`] we can use all its arguments and add the following: Parameters: mixture_coef (`float` or `list[float]`, *optional*, defaults to `0.5`): Logit mixture coefficient for the model and reference model. If a list of floats is provided then the mixture coefficient is selected for each new epoch and the last coefficient is used for the rest of the epochs. """ vllm_sampling_params: Optional[Any] = field( default = None, metadata = {'help': 'vLLM SamplingParams'}, ) unsloth_num_chunks : Optional[int] = field( default = -1, metadata = {'help': 'Chunk size to reduce memory usage. -1 is most efficient.'}, ) max_seq_length : Optional[int] = field( default = None, metadata = {'help': 'Maximum sequence length to truncate to.'}, ) def __init__( self, output_dir = None, overwrite_output_dir = None, do_train = False, do_eval = False, do_predict = False, eval_strategy = 'no', prediction_loss_only = False, per_device_train_batch_size = 4, per_device_eval_batch_size = 4, per_gpu_train_batch_size = None, per_gpu_eval_batch_size = None, gradient_accumulation_steps = 2, eval_accumulation_steps = 2, eval_delay = 0, torch_empty_cache_steps = 250, learning_rate = 5e-05, weight_decay = 0.01, adam_beta1 = 0.9, adam_beta2 = 0.999, adam_epsilon = 1e-08, max_grad_norm = 1.0, num_train_epochs = 3.0, max_steps = -1, lr_scheduler_type = 'linear', warmup_ratio = 0.1, warmup_steps = 0, log_level = 'passive', log_level_replica = 'warning', log_on_each_node = True, logging_dir = None, logging_strategy = 'steps', logging_first_step = False, logging_steps = 1, logging_nan_inf_filter = False, save_strategy = 'steps', save_steps = 500, save_total_limit = None, save_safetensors = True, save_on_each_node = False, save_only_model = False, restore_callback_states_from_checkpoint = False, no_cuda = False, use_cpu = False, use_mps_device = False, seed = 3407, data_seed = 3407, jit_mode_eval = False, bf16 = False, fp16 = False, fp16_opt_level = 'O1', half_precision_backend = 'auto', bf16_full_eval = False, fp16_full_eval = False, tf32 = None, local_rank = -1, ddp_backend = None, tpu_num_cores = None, tpu_metrics_debug = False, debug = '', dataloader_drop_last = False, eval_steps = None, dataloader_num_workers = 0, dataloader_prefetch_factor = None, past_index = -1, run_name = None, disable_tqdm = None, remove_unused_columns = True, label_names = None, load_best_model_at_end = False, metric_for_best_model = None, greater_is_better = None, ignore_data_skip = False, fsdp = None, fsdp_min_num_params = 0, fsdp_config = None, fsdp_transformer_layer_cls_to_wrap = None, accelerator_config = None, parallelism_config = None, deepspeed = None, label_smoothing_factor = 0.0, optim = 'adamw_8bit', optim_args = None, adafactor = False, group_by_length = False, length_column_name = 'length', report_to = None, project = 'huggingface', trackio_space_id = 'trackio', ddp_find_unused_parameters = None, ddp_bucket_cap_mb = None, ddp_broadcast_buffers = None, dataloader_pin_memory = True, dataloader_persistent_workers = False, skip_memory_metrics = True, use_legacy_prediction_loop = False, push_to_hub = False, resume_from_checkpoint = None, hub_model_id = None, hub_strategy = 'every_save', hub_token = None, hub_private_repo = None, hub_always_push = False, hub_revision = None, gradient_checkpointing = True, gradient_checkpointing_kwargs = None, include_inputs_for_metrics = False, eval_do_concat_batches = True, fp16_backend = 'auto', push_to_hub_model_id = None, push_to_hub_organization = None, push_to_hub_token = None, mp_parameters = '', auto_find_batch_size = False, full_determinism = False, torchdynamo = None, ray_scope = 'last', ddp_timeout = 1800, torch_compile = False, torch_compile_backend = None, torch_compile_mode = None, include_tokens_per_second = False, include_num_input_tokens_seen = False, neftune_noise_alpha = None, optim_target_modules = None, batch_eval_metrics = False, eval_on_start = False, use_liger_kernel = False, liger_kernel_config = None, eval_use_gather_object = False, average_tokens_across_devices = True, reward_model_path = None, judge = None, max_new_tokens = 64, max_length = 512, temperature = 0.9, top_p = 1.0, top_k = None, min_p = None, repetition_penalty = 1.0, generation_kwargs = {}, use_transformers_paged = False, cache_implementation = None, missing_eos_penalty = None, loss_type = 'sigmoid', disable_dropout = True, use_vllm = False, vllm_model_impl = 'vllm', vllm_guided_decoding_regex = None, vllm_gpu_memory_utilization = 0.55, vllm_mode = 'colocate', vllm_server_base_url = None, vllm_server_host = '0.0.0.0', vllm_server_port = 8000, vllm_server_timeout = 240.0, vllm_tensor_parallel_size = 1, ds3_gather_for_generation = True, model_init_kwargs = None, reward_weights = None, dataset_num_proc = None, gpu_memory_utilization = None, vllm_sampling_params = None, unsloth_num_chunks = -1, max_seq_length = None, **kwargs, ): if learning_rate < 1e-7: print(f'Unsloth: Your learning rate of `{learning_rate}` is too small and less than 1e-7! Consider increasing it, otherwise gradient updates will be close to 0!') if learning_rate > 1: print(f'Unsloth: Your learning rate of `{learning_rate}` is way too larger > 1! Consider decreasing it to 1e-1, otherwise gradient updates will explode!') if output_dir is None and save_strategy == 'steps' and save_steps == 500: output_dir = 'unsloth_training_checkpoints' save_strategy = 'no' if dataset_num_proc is None: from multiprocessing import cpu_count dataset_num_proc = min(max(cpu_count()+4, 2), 64) if temperature <= 0: raise MathError('Unsloth: Please set a positive non-zero temperature since your results will be wrong.') elif temperature >= 10: raise MathError('Unsloth: Please set a positive non-zero temperature less than 10, since sampling will be quite erratic.') super().__init__( output_dir = output_dir, overwrite_output_dir = overwrite_output_dir, do_train = do_train, do_eval = do_eval, do_predict = do_predict, eval_strategy = eval_strategy, prediction_loss_only = prediction_loss_only, per_device_train_batch_size = per_device_train_batch_size, per_device_eval_batch_size = per_device_eval_batch_size, per_gpu_train_batch_size = per_gpu_train_batch_size, per_gpu_eval_batch_size = per_gpu_eval_batch_size, gradient_accumulation_steps = gradient_accumulation_steps, eval_accumulation_steps = eval_accumulation_steps, eval_delay = eval_delay, torch_empty_cache_steps = torch_empty_cache_steps, learning_rate = learning_rate, weight_decay = weight_decay, adam_beta1 = adam_beta1, adam_beta2 = adam_beta2, adam_epsilon = adam_epsilon, max_grad_norm = max_grad_norm, num_train_epochs = num_train_epochs, max_steps = max_steps, lr_scheduler_type = lr_scheduler_type, warmup_ratio = warmup_ratio, warmup_steps = warmup_steps, log_level = log_level, log_level_replica = log_level_replica, log_on_each_node = log_on_each_node, logging_dir = logging_dir, logging_strategy = logging_strategy, logging_first_step = logging_first_step, logging_steps = logging_steps, logging_nan_inf_filter = logging_nan_inf_filter, save_strategy = save_strategy, save_steps = save_steps, save_total_limit = save_total_limit, save_safetensors = save_safetensors, save_on_each_node = save_on_each_node, save_only_model = save_only_model, restore_callback_states_from_checkpoint = restore_callback_states_from_checkpoint, no_cuda = no_cuda, use_cpu = use_cpu, use_mps_device = use_mps_device, seed = seed, data_seed = data_seed, jit_mode_eval = jit_mode_eval, bf16 = bf16, fp16 = fp16, fp16_opt_level = fp16_opt_level, half_precision_backend = half_precision_backend, bf16_full_eval = bf16_full_eval, fp16_full_eval = fp16_full_eval, tf32 = tf32, local_rank = local_rank, ddp_backend = ddp_backend, tpu_num_cores = tpu_num_cores, tpu_metrics_debug = tpu_metrics_debug, debug = debug, dataloader_drop_last = dataloader_drop_last, eval_steps = eval_steps, dataloader_num_workers = dataloader_num_workers, dataloader_prefetch_factor = dataloader_prefetch_factor, past_index = past_index, run_name = run_name, disable_tqdm = disable_tqdm, remove_unused_columns = remove_unused_columns, label_names = label_names, load_best_model_at_end = load_best_model_at_end, metric_for_best_model = metric_for_best_model, greater_is_better = greater_is_better, ignore_data_skip = ignore_data_skip, fsdp = fsdp, fsdp_min_num_params = fsdp_min_num_params, fsdp_config = fsdp_config, fsdp_transformer_layer_cls_to_wrap = fsdp_transformer_layer_cls_to_wrap, accelerator_config = accelerator_config, parallelism_config = parallelism_config, deepspeed = deepspeed, label_smoothing_factor = label_smoothing_factor, optim = optim, optim_args = optim_args, adafactor = adafactor, group_by_length = group_by_length, length_column_name = length_column_name, report_to = report_to, project = project, trackio_space_id = trackio_space_id, ddp_find_unused_parameters = ddp_find_unused_parameters, ddp_bucket_cap_mb = ddp_bucket_cap_mb, ddp_broadcast_buffers = ddp_broadcast_buffers, dataloader_pin_memory = dataloader_pin_memory, dataloader_persistent_workers = dataloader_persistent_workers, skip_memory_metrics = skip_memory_metrics, use_legacy_prediction_loop = use_legacy_prediction_loop, push_to_hub = push_to_hub, resume_from_checkpoint = resume_from_checkpoint, hub_model_id = hub_model_id, hub_strategy = hub_strategy, hub_token = hub_token, hub_private_repo = hub_private_repo, hub_always_push = hub_always_push, hub_revision = hub_revision, gradient_checkpointing = gradient_checkpointing, gradient_checkpointing_kwargs = gradient_checkpointing_kwargs, include_inputs_for_metrics = include_inputs_for_metrics, eval_do_concat_batches = eval_do_concat_batches, fp16_backend = fp16_backend, push_to_hub_model_id = push_to_hub_model_id, push_to_hub_organization = push_to_hub_organization, push_to_hub_token = push_to_hub_token, mp_parameters = mp_parameters, auto_find_batch_size = auto_find_batch_size, full_determinism = full_determinism, torchdynamo = torchdynamo, ray_scope = ray_scope, ddp_timeout = ddp_timeout, torch_compile = torch_compile, torch_compile_backend = torch_compile_backend, torch_compile_mode = torch_compile_mode, include_tokens_per_second = include_tokens_per_second, include_num_input_tokens_seen = include_num_input_tokens_seen, neftune_noise_alpha = neftune_noise_alpha, optim_target_modules = optim_target_modules, batch_eval_metrics = batch_eval_metrics, eval_on_start = eval_on_start, use_liger_kernel = use_liger_kernel, liger_kernel_config = liger_kernel_config, eval_use_gather_object = eval_use_gather_object, average_tokens_across_devices = average_tokens_across_devices, reward_model_path = reward_model_path, judge = judge, max_new_tokens = max_new_tokens, max_length = max_length, temperature = temperature, top_p = top_p, top_k = top_k, min_p = min_p, repetition_penalty = repetition_penalty, generation_kwargs = generation_kwargs, use_transformers_paged = use_transformers_paged, cache_implementation = cache_implementation, missing_eos_penalty = missing_eos_penalty, loss_type = loss_type, disable_dropout = disable_dropout, use_vllm = use_vllm, vllm_model_impl = vllm_model_impl, vllm_guided_decoding_regex = vllm_guided_decoding_regex, vllm_gpu_memory_utilization = vllm_gpu_memory_utilization, vllm_mode = vllm_mode, vllm_server_base_url = vllm_server_base_url, vllm_server_host = vllm_server_host, vllm_server_port = vllm_server_port, vllm_server_timeout = vllm_server_timeout, vllm_tensor_parallel_size = vllm_tensor_parallel_size, ds3_gather_for_generation = ds3_gather_for_generation, model_init_kwargs = model_init_kwargs, reward_weights = reward_weights, dataset_num_proc = dataset_num_proc, gpu_memory_utilization = gpu_memory_utilization,**kwargs) self.vllm_sampling_params = vllm_sampling_params self.unsloth_num_chunks = unsloth_num_chunks self.max_seq_length = max_seq_length pass class _UnslothNashMDTrainer(OnlineDPOTrainer): """""" _tag_names = ["trl", "nash-md"] _name = "Nash-MD" _paper = { "title": "Nash Learning from Human Feedback", "id": "2312.00886", # docstyle-ignore "citation": textwrap.dedent("""\ @inproceedings{munos2024nash, title = {{Nash Learning from Human Feedback}}, author = {R{\'{e}}mi Munos and Michal Valko and Daniele Calandriello and Mohammad Gheshlaghi Azar and Mark Rowland and Zhaohan Daniel Guo and Yunhao Tang and Matthieu Geist and Thomas Mesnard and C{\\^{o}}me Fiegel and Andrea Michi and Marco Selvi and Sertan Girgin and Nikola Momchev and Olivier Bachem and Daniel J. Mankowitz and Doina Precup and Bilal Piot}, year = 2024, booktitle = {Forty-first International Conference on Machine Learning, {ICML} 2024, Vienna, Austria, July 21-27, 2024}, publisher = {OpenReview.net}, url = {https://openreview.net/forum?id=Y5AmNYiyCQ} }"""), } def __init__( self, model: Union[PreTrainedModel, nn.Module] = None, ref_model: Union[PreTrainedModel, nn.Module] = None, reward_funcs: Union[PreTrainedModel, nn.Module, None] = None, judge: Optional[BasePairwiseJudge] = None, args: Optional[NashMDConfig] = None, data_collator: Optional[Callable] = None, train_dataset: Optional[Union[Dataset, IterableDataset]] = None, eval_dataset: Optional[Union[Dataset, dict[str, Dataset]]] = None, processing_class: Optional[ Union[PreTrainedTokenizerBase, BaseImageProcessor, FeatureExtractionMixin, ProcessorMixin] ] = None, peft_config: Optional[dict] = None, compute_metrics: Optional[Callable[[EvalPrediction], dict]] = None, callbacks: Optional[list[TrainerCallback]] = None, optimizers: tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR] = (None, None), preprocess_logits_for_metrics: Optional[Callable[[torch.Tensor, torch.Tensor], torch.Tensor]] = None, # Deprecated parameters reward_model: Optional[Union[PreTrainedModel, nn.Module]] = None, ) -> None: super().__init__( model=model, ref_model=ref_model, reward_funcs=reward_funcs, judge=judge, args=args, data_collator=data_collator, train_dataset=train_dataset, eval_dataset=eval_dataset, processing_class=processing_class, reward_processing_classes=processing_class, peft_config=peft_config, compute_metrics=compute_metrics, callbacks=callbacks, optimizers=optimizers, preprocess_logits_for_metrics=preprocess_logits_for_metrics, reward_model=reward_model, ) self._mixture_coef = self.args.mixture_coef # Overwrite the stats dictionary to include NashMD specific statistics self.stats = { # Remove "non_score_reward", "rlhf_reward", "scores_margin" # Add "mixture_coef" "loss/kl": [], "objective/entropy": [], "loss/score": [], "rewards/probabilities": [], "rewards/accuracies": [], "rewards/margins": [], "logps/chosen": [], "logps/rejected": [], "val/model_contain_eos_token": [], "val/ref_contain_eos_token": [], "beta": [], "mixture_coef": [], } if self.reward_funcs is not None: if len(self.reward_funcs) != 1: raise ValueError("NashMDTrainer only supports one reward function/model.") self.reward_funcs = self.reward_funcs[0] self.stats["rewards/chosen"] = [] self.stats["rewards/rejected"] = [] @property def mixture_coef(self): if isinstance(self._mixture_coef, list): epoch = self.state.epoch return self._mixture_coef[epoch] if epoch < len(self._mixture_coef) else self._mixture_coef[-1] else: return self._mixture_coef def _generate_completions(self, model, prompts): # Generate completions from the policy model. with unwrap_model_for_generation(model, self.accelerator) as unwrapped_policy_for_gen_ctx: model_output = unwrapped_policy_for_gen_ctx.generate( input_ids=prompts["input_ids"], attention_mask=prompts["attention_mask"], generation_config=self.generation_config, ) # Get the DDP/FSDP unwrapped version of the main model. # This will be the policy model for GeometricMixtureWrapper (PEFT adapters active if PEFT is used). policy_model_for_gmw = self.accelerator.unwrap_model(model) # Determine the correct reference model for GeometricMixtureWrapper. # This also needs to be DDP/FSDP unwrapped. ref_model_for_gmw: torch.nn.Module if self.ref_model is None: # No explicit ref_model is provided. # Use the base of the main `model` if it's a PEFT model. # policy_model_for_gmw is already DDP-unwrapped. if is_peft_available() and isinstance(policy_model_for_gmw, PeftModel): ref_model_for_gmw = policy_model_for_gmw.get_base_model() else: # Not a PEFT model (or PEFT not available), or already a base model. # Use the DDP-unwrapped policy model itself as the reference. ref_model_for_gmw = policy_model_for_gmw else: # An explicit ref_model is provided. Unwrap it for DDP/FSDP. ref_model_for_gmw = self.accelerator.unwrap_model(self.ref_model) # Both models given to GeometricMixtureWrapper (policy_model_for_gmw and ref_model_for_gmw) are DDP-unwrapped. with torch.no_grad(): # Ensure no_grad context for mixture model generation mixture_model = GeometricMixtureWrapper( model=policy_model_for_gmw, ref_model=ref_model_for_gmw, generation_config=self.generation_config, mixture_coef=self.mixture_coef, device=self.accelerator.device, ) mixture_output = mixture_model.generate( input_ids=prompts["input_ids"], attention_mask=prompts["attention_mask"], generation_config=self.generation_config, ) return model_output, mixture_output def _process_completions(self, model_output, mixture_output, prompts): context_length = prompts["input_ids"].shape[1] # Process model completions model_completion_ids = model_output[:, context_length:] model_completion_ids, model_completion_mask = truncate_right( model_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id ) model_data = { "input_ids": torch.cat((prompts["input_ids"], model_completion_ids), dim=1), "attention_mask": torch.cat((prompts["attention_mask"], model_completion_mask), dim=1), "raw": prompts["raw"], } # Process reference model completions mixture_completion_ids = mixture_output[:, context_length:] mixture_completion_ids, mixture_completion_mask = truncate_right( mixture_completion_ids, self.processing_class.eos_token_id, self.processing_class.pad_token_id ) mixture_data = { "input_ids": torch.cat((prompts["input_ids"], mixture_completion_ids), dim=1), "attention_mask": torch.cat((prompts["attention_mask"], mixture_completion_mask), dim=1), "raw": prompts["raw"], } return model_data, mixture_data def _compute_rewards(self, model_data, mixture_data, context_length): with torch.no_grad(): _, model_scores, _ = get_reward( self.reward_funcs, model_data["input_ids"], self.processing_class.pad_token_id, context_length ) _, mixture_scores, _ = get_reward( self.reward_funcs, mixture_data["input_ids"], self.processing_class.pad_token_id, context_length ) # Apply EOS penalty if needed if self.args.missing_eos_penalty is not None: model_contain_eos = torch.any(model_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) mixture_contain_eos = torch.any(mixture_data["input_ids"] == self.processing_class.eos_token_id, dim=-1) model_scores[~model_contain_eos] -= self.args.missing_eos_penalty mixture_scores[~mixture_contain_eos] -= self.args.missing_eos_penalty return model_scores, mixture_scores def _compute_judge(self, model_data, mixture_data, context_length): prompts = model_data["raw"] model_data_completions = self.processing_class.batch_decode( model_data["input_ids"][:, context_length:], skip_special_tokens=True ) model_data_completions = [completion.strip() for completion in model_data_completions] mixture_data_completions = self.processing_class.batch_decode( mixture_data["input_ids"][:, context_length:], skip_special_tokens=True ) mixture_data_completions = [completion.strip() for completion in mixture_data_completions] if is_conversational({"prompt": prompts[0]}): model_data_completions = [ [{"role": "assistant", "content": completion}] for completion in model_data_completions ] environment = jinja2.Environment() template = environment.from_string(SIMPLE_CHAT_TEMPLATE) prompts = [template.render(messages=message) for message in prompts] model_data_completions = [template.render(messages=completion) for completion in model_data_completions] mixture_data_completions = [ [{"role": "assistant", "content": completion}] for completion in mixture_data_completions ] mixture_data_completions = [ template.render(messages=completion) for completion in mixture_data_completions ] probability = self.judge.judge( prompts, list(zip(model_data_completions, mixture_data_completions)), return_scores=True, ) return torch.tensor(probability, device=model_data["input_ids"].device) def _compute_logprobs(self, model, model_data, context_length): def compute_logprobs_for_data(m, data): output = m(data["input_ids"], attention_mask=data["attention_mask"]) logits = output.logits[:, context_length - 1 : -1] token_logprobs = selective_log_softmax(logits, data["input_ids"][:, context_length:]) return token_logprobs # Compute logprobs for model completions under the model model_logprobs_model_data = compute_logprobs_for_data(model, model_data) # Compute logprobs of model completions under the reference model with torch.no_grad(): if self.ref_model is None: with model.disable_adapter(): ref_logprobs_model_data = compute_logprobs_for_data(model, model_data) else: ref_logprobs_model_data = compute_logprobs_for_data(self.ref_model, model_data) # Mask padding tokens model_padding_mask = model_data["attention_mask"][:, context_length:] == 0 model_logprobs_model_data = model_logprobs_model_data.masked_fill(model_padding_mask, 0.0) ref_logprobs_model_data = ref_logprobs_model_data.masked_fill(model_padding_mask, 0.0) return (model_logprobs_model_data, ref_logprobs_model_data) def _compute_losses( self, model_logprobs_model_data, ref_logprobs_model_data, probability, ): # reinforce score where 0.5 is a control variate score = (probability - 0.5) * model_logprobs_model_data.sum(1) # kl divergence via reinforce with torch.no_grad(): log_ratio = model_logprobs_model_data - ref_logprobs_model_data kl_div_log = log_ratio.sum(1) kl_div_loss = (log_ratio * model_logprobs_model_data).sum(1) # final loss loss = self.beta * kl_div_loss - score return loss.mean(), score, kl_div_log def _log_statistics( self, model_data, mixture_data, model_logprobs_model_data, ref_logprobs_model_data, probability, score, kl_div, context_length, model_scores=None, mixture_scores=None, ): # Helper function to gather and compute mean def gather_mean(tensor): return self.accelerator.gather_for_metrics(tensor).mean().item() # Log score self.stats["loss/score"].append(gather_mean(score)) # Log KL divergence self.stats["loss/kl"].append(gather_mean(kl_div)) # Log logprobs model_logprobs_model_data_sum = model_logprobs_model_data.sum(1) ref_logprobs_model_data_sum = ref_logprobs_model_data.sum(1) self.stats["logps/chosen"].append(gather_mean(model_logprobs_model_data_sum)) self.stats["logps/rejected"].append(gather_mean(ref_logprobs_model_data_sum)) # Log rewards if self.reward_funcs is not None: self.stats["rewards/chosen"].append(gather_mean(model_scores)) self.stats["rewards/rejected"].append(gather_mean(mixture_scores)) # Log probabilities self.stats["rewards/probabilities"].append(gather_mean(probability)) # Calculate entropy for model data entropy_model_data = -model_logprobs_model_data.sum(1) self.stats["objective/entropy"].append(gather_mean(entropy_model_data)) # Calculate margins margin = model_logprobs_model_data_sum - ref_logprobs_model_data_sum self.stats["rewards/margins"].append(gather_mean(margin)) # Calculate accuracy accuracy = (margin > 0).float() self.stats["rewards/accuracies"].append(gather_mean(accuracy)) # Log EOS token statistics model_eos = (model_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) mixture_eos = (mixture_data["input_ids"][:, context_length:] == self.processing_class.eos_token_id).any(dim=1) self.stats["val/model_contain_eos_token"].append(gather_mean(model_eos.float())) self.stats["val/ref_contain_eos_token"].append(gather_mean(mixture_eos.float())) # Log beta and mixture coef self.stats["beta"].append(self.beta) self.stats["mixture_coef"].append(self.mixture_coef) def training_step( self, model: nn.Module, inputs: dict[str, Union[torch.Tensor, Any]], num_items_in_batch: Optional[int] = None ) -> torch.Tensor: model.train() # Apply chat template and tokenize the input batch_size = len(next(iter(inputs.values()))) prompts = inputs["prompt"] inputs = [{k: v[i] for k, v in inputs.items()} for i in range(batch_size)] inputs = [maybe_apply_chat_template(x, self.processing_class) for x in inputs] inputs = [self.tokenize_row(x, self.model.config.is_encoder_decoder, self.processing_class) for x in inputs] inputs = self.data_collator(inputs) # need the prompt_ only inputs = self._prepare_inputs(inputs) context_length = inputs["prompt_input_ids"].shape[1] prompts = { "input_ids": inputs["prompt_input_ids"], "attention_mask": inputs["prompt_attention_mask"], "raw": prompts, } del inputs # Sample completions from both the model and the reference model model_output, mixture_output = self._generate_completions(model, prompts) # Process model completions model_data, mixture_data = self._process_completions(model_output, mixture_output, prompts) # Compute rewards if self.reward_funcs is not None: model_scores, mixture_scores = self._compute_rewards(model_data, mixture_data, context_length) # probability of the model data vs the mixture data probability = F.sigmoid(model_scores - mixture_scores) else: model_scores, mixture_scores = None, None probability = self._compute_judge(model_data, mixture_data, context_length) # Compute logprobs model_logprobs_model_data, ref_logprobs_model_data = self._compute_logprobs(model, model_data, context_length) # Compute loss loss, score, kl_div = self._compute_losses(model_logprobs_model_data, ref_logprobs_model_data, probability) # Log everything self._log_statistics( model_data, mixture_data, model_logprobs_model_data.detach(), ref_logprobs_model_data, probability, score.detach(), kl_div.detach(), context_length, model_scores, mixture_scores, ) if ( self.args.torch_empty_cache_steps is not None and self.state.global_step % self.args.torch_empty_cache_steps == 0 ): empty_cache() kwargs = {} # For LOMO optimizers you need to explicitly use the learning rate if self.args.optim in [OptimizerNames.LOMO, OptimizerNames.ADALOMO]: kwargs["learning_rate"] = self._get_learning_rate() if self.args.n_gpu > 1: loss = loss.mean() # mean() to average on multi-gpu parallel training self.accelerator.backward(loss, **kwargs) return loss.detach() / self.args.gradient_accumulation_steps class UnslothNashMDTrainer(_UnslothNashMDTrainer): """ Trainer for the Nash-MD method. It is implemented as a subclass of [`OnlineDPOTrainer`]. Args: model ([`~transformers.PreTrainedModel`]): The model to train, preferably an `AutoModelForCausalLM`. ref_model ([`PreTrainedModelWrapper`]): Hugging Face transformer model with a casual language modelling head. Used for implicit reward computation and loss. If no reference model is provided, the trainer will create a reference model with the same architecture as the model to be optimized. reward_funcs ([`~transformers.PreTrainedModel`]): The reward model to score completions with, preferably an [`~transformers.AutoModelForSequenceClassification`]. judge ([`BasePairwiseJudge`]): The judge to use for pairwise comparison of model completions. args ([`NashMDConfig`]): The NashMD config arguments to use for training. data_collator ([`~transformers.DataCollator`]): The data collator to use for training. If None is specified, the default data collator ([`DPODataCollatorWithPadding`]) will be used which will pad the sequences to the maximum length of the sequences in the batch, given a dataset of paired sequences. train_dataset ([`~datasets.Dataset`]): The dataset to use for training. eval_dataset ([`~datasets.Dataset`]): The dataset to use for evaluation. processing_class ([`~transformers.PreTrainedTokenizerBase`], [`~transformers.BaseImageProcessor`], [`~transformers.FeatureExtractionMixin`] or [`~transformers.ProcessorMixin`], *optional*): Processing class used to process the data. If provided, will be used to automatically process the inputs for the model, and it will be saved along the model to make it easier to rerun an interrupted training or reuse the fine-tuned model. peft_config (`dict`): The peft config to use for training. compute_metrics (`Callable[[EvalPrediction], dict]`, *optional*): The function to use to compute the metrics. Must take a `EvalPrediction` and return a dictionary string to metric values. callbacks (`list[transformers.TrainerCallback]`): The callbacks to use for training. optimizers (`tuple[torch.optim.Optimizer, torch.optim.lr_scheduler.LambdaLR]`): The optimizer and scheduler to use for training. preprocess_logits_for_metrics (`Callable[[torch.Tensor, torch.Tensor], torch.Tensor]`): The function to use to preprocess the logits before computing the metrics. reward_model: This parameter is deprecated and will be removed in version 0.25.0. Use `reward_funcs` instead. """ def __init__( self, model = None, ref_model = None, reward_funcs = None, judge = None, args = None, data_collator = None, train_dataset = None, eval_dataset = None, processing_class = None, peft_config = None, compute_metrics = None, callbacks = None, preprocess_logits_for_metrics = None, reward_model = None, **kwargs ): if args is None: args = UnslothNashMDConfig() use_bf16 = getattr(args, 'bf16', False) if type(use_bf16) is not bool: use_bf16 = False use_fp16 = getattr(args, 'fp16', False) if type(use_fp16) is not bool: use_fp16 = False force_float32 = False full_finetuning = os.environ.get('UNSLOTH_ENABLE_FULL_FINETUNING', '0') == '1' if not full_finetuning and (os.environ.get('UNSLOTH_FORCE_FLOAT32', '0') == '1'): print('Unsloth: Switching to float32 training since model cannot work with float16') force_float32 = True mixed_precision_dtype = os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') dtype = getattr(model.config, 'dtype', None) or getattr(model.config, 'torch_dtype', None) if dtype is None: dtype = model.get_input_embeddings().dtype from unsloth_zoo.utils import _get_dtype dtype = _get_dtype(dtype) float16 = dtype == torch.float16 if not force_float32 and (float16 and use_bf16): raise TypeError('Unsloth: Model is in float16 precision but you want to use bfloat16 precision. Set fp16 to `True` and bf16 to `False`') if not force_float32 and (not float16 and use_fp16): raise TypeError('Unsloth: Model is in bfloat16 precision but you want to use float16 precision. Set fp16 to `False` and bf16 to `True`') if force_float32: # Forced float32 training args.fp16 = False args.bf16 = False os.environ['ACCELERATE_MIXED_PRECISION'] = 'no' elif (not use_bf16 and not use_fp16) and mixed_precision_dtype == 'float32': # Mixed precision training args.fp16 = float16 args.bf16 = not float16 os.environ['ACCELERATE_MIXED_PRECISION'] = 'fp16' if float16 else 'bf16' if getattr(args, 'eval_dataset', None) is not None and getattr(args, 'eval_strategy', 'no') == 'no': args.eval_strategy = 'steps' if getattr(args, 'eval_steps', None) is None: args.eval_steps = 0.1 ga_steps = getattr(args, 'gradient_accumulation_steps', None) if ga_steps is not None and ga_steps > 1: from transformers import __version__ as transformers_version if Version(transformers_version) <= Version('4.45.2'): print('**** Unsloth: Please use our fixed gradient_accumulation_steps by updating transformers, TRL and Unsloth!\n' '`pip install --upgrade --no-cache-dir --force-reinstall --no-deps unsloth transformers trl unsloth_zoo`') if getattr(args, 'eval_strategy', 'no') != 'no': eval_bsz = getattr(args, 'per_device_eval_batch_size', 8) if eval_bsz == 8 and args.per_device_train_batch_size < eval_bsz: args.per_device_eval_batch_size = args.per_device_train_batch_size if getattr(args, 'eval_accumulation_steps', None) is None and ga_steps is not None: args.eval_accumulation_steps = ga_steps fp16_full_eval = getattr(args, 'fp16_full_eval', False) if type(fp16_full_eval) is not bool: fp16_full_eval = False bf16_full_eval = getattr(args, 'bf16_full_eval', False) if type(bf16_full_eval) is not bool: bf16_full_eval = False if args.fp16 and bf16_full_eval: args.bf16_full_eval = False; args.fp16_full_eval = True if args.bf16 and fp16_full_eval: args.bf16_full_eval = True; args.fp16_full_eval = False if force_float32: args.bf16_full_eval = False args.fp16_full_eval = False elif os.environ.get('UNSLOTH_MIXED_PRECISION', 'float32') == 'bfloat16': args.bf16_full_eval = True args.fp16_full_eval = False elif not bf16_full_eval and not fp16_full_eval: args.bf16_full_eval = args.bf16 args.fp16_full_eval = args.fp16 _output_logits = False if locals().get('compute_metrics', None) is not None: _output_logits = True if locals().get('preprocess_logits_for_metrics', None) is not None: _output_logits = True if _output_logits: os.environ['UNSLOTH_RETURN_LOGITS'] = '1' if 'max_seq_length' not in locals() and not hasattr(args, 'max_seq_length'): pass else: model_max_seq_length = getattr(model, 'max_seq_length', None) args_max_seq_length = getattr(args, 'max_seq_length', None) if args_max_seq_length is None and model_max_seq_length is not None: max_seq_length = model.max_seq_length if hasattr(args, 'max_seq_length'): args.max_seq_length = max_seq_length if model is not None and hasattr(model, 'for_training'): model.for_training() if 'tokenizer' in locals() and hasattr(tokenizer, 'padding_side'): tokenizer.padding_side = 'right' if 'processing_class' in locals(): if hasattr(processing_class, 'padding_side'): processing_class.padding_side = 'right' if hasattr(processing_class, 'tokenizer') and hasattr(processing_class.tokenizer, 'padding_side'): processing_class.tokenizer.padding_side = 'right' __tokenizer = processing_class if 'processing_class' in locals() else tokenizer from unsloth_zoo.vision_utils import UnslothVisionDataCollator if not isinstance(data_collator, UnslothVisionDataCollator): if isinstance(data_collator, DataCollatorForSeq2Seq) and 'labels' not in train_dataset.column_names: data_collator = TransformersDataCollatorForLanguageModeling( __tokenizer, mlm = False, mlm_probability = 0.0, pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), ) elif isinstance(data_collator, TransformersDataCollatorForLanguageModeling) and 'labels' in train_dataset.column_names: data_collator = DataCollatorForSeq2Seq( __tokenizer, pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), ) else: if hasattr(args, 'remove_unused_columns'): args.remove_unused_columns = False if hasattr(args, 'dataset_text_field'): args.dataset_text_field = '' if hasattr(args, 'dataset_kwargs'): args.dataset_kwargs = {'skip_prepare_dataset': True} if not isinstance(data_collator, UnslothVisionDataCollator): if not hasattr(__tokenizer, 'pad') and hasattr(__tokenizer, 'tokenizer'): if isinstance(data_collator, DataCollatorForSeq2Seq): data_collator = DataCollatorForSeq2Seq( __tokenizer.tokenizer, pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), ) else: data_collator = TransformersDataCollatorForLanguageModeling( __tokenizer.tokenizer, mlm = False, mlm_probability = 0.0, pad_to_multiple_of = getattr(args, 'pad_to_multiple_of', None), ) other_metrics = [] from unsloth_zoo.logging_utils import PatchRLStatistics PatchRLStatistics('nash_md_trainer', other_metrics) # [TODO] Fix up DataParallel multiplying batch sizes # [TODO] DDP works, but DP seems to not work? [TODO] if getattr(args, "parallel_mode", None) == ParallelMode.NOT_DISTRIBUTED and args.n_gpu > 1: if getattr(args, "_n_gpu", 1) != 1: args._n_gpu = 1 if "model" in locals() and hasattr(model, "for_training"): model.for_training() super().__init__( model = model, ref_model = ref_model, reward_funcs = reward_funcs, judge = judge, args = args, data_collator = data_collator, train_dataset = train_dataset, eval_dataset = eval_dataset, processing_class = processing_class, peft_config = peft_config, compute_metrics = compute_metrics, callbacks = callbacks, preprocess_logits_for_metrics = preprocess_logits_for_metrics, reward_model = reward_model,**kwargs) if "model" in locals() and hasattr(model, "for_inference"): model.for_inference() if hasattr(self, 'neftune_hook_handle'): self.neftune_hook_handle.remove() if hasattr(self, 'neftune_hook_handle'): del self.neftune_hook_handle if getattr(args, 'neftune_noise_alpha', None) is not None: model.get_input_embeddings().neftune_noise_alpha = self.neftune_noise_alpha pass if hasattr(self, 'accelerator'): scaler = self.accelerator.scaler current_model = model while hasattr(current_model, 'model'): current_model.accelerator_scaler = scaler current_model = current_model.model current_model.accelerator_scaler = scaler pass if hasattr(self, 'train'): self.train = MethodType(prepare_for_training_mode(self.__class__.train), self) pass pass