Spaces:
Sleeping
Sleeping
| # | |
| # For licensing see accompanying LICENSE file. | |
| # Copyright (C) 2025 Apple Inc. All Rights Reserved. | |
| # | |
| """This file contains code for LPIPS. | |
| Reference: | |
| https://github.com/richzhang/PerceptualSimilarity/ | |
| https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/lpips.py | |
| https://github.com/CompVis/taming-transformers/blob/master/taming/util.py | |
| """ | |
| import os | |
| import hashlib | |
| import requests | |
| from collections import namedtuple | |
| from tqdm import tqdm | |
| import torch | |
| import torch.nn as nn | |
| from torchvision import models | |
| _LPIPS_MEAN = [-0.030, -0.088, -0.188] | |
| _LPIPS_STD = [0.458, 0.448, 0.450] | |
| class LPIPS(nn.Module): | |
| # Learned perceptual metric. | |
| def __init__(self, dist, use_dropout=True): | |
| super().__init__() | |
| self.dist = dist | |
| self.scaling_layer = ScalingLayer() | |
| self.chns = [64, 128, 256, 512, 512] # vg16 features | |
| self.net = vgg16(pretrained=True, requires_grad=False) | |
| self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout) | |
| self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout) | |
| self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout) | |
| self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout) | |
| self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout) | |
| self.load_pretrained() | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def load_pretrained(self): | |
| VGG_PATH = os.path.join(os.path.join("/root/.cache", "vgg.pth")) | |
| self.load_state_dict(torch.load(VGG_PATH, map_location=torch.device("cpu")), strict=False) | |
| def forward(self, input, target): | |
| # Notably, the LPIPS w/ pre-trained weights expect the input in the range of [-1, 1]. | |
| # However, our codebase assumes all inputs are in range of [0, 1], and thus a scaling is needed. | |
| input = input * 2. - 1. | |
| target = target * 2. - 1. | |
| in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target)) | |
| outs0, outs1 = self.net(in0_input), self.net(in1_input) | |
| feats0, feats1, diffs = {}, {}, {} | |
| lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4] | |
| for kk in range(len(self.chns)): | |
| feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk]) | |
| diffs[kk] = (feats0[kk] - feats1[kk]) ** 2 | |
| res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))] | |
| val = res[0] | |
| for l in range(1, len(self.chns)): | |
| val += res[l] | |
| return val | |
| class ScalingLayer(nn.Module): | |
| def __init__(self): | |
| super(ScalingLayer, self).__init__() | |
| self.register_buffer("shift", torch.Tensor(_LPIPS_MEAN)[None, :, None, None]) | |
| self.register_buffer("scale", torch.Tensor(_LPIPS_STD)[None, :, None, None]) | |
| def forward(self, inp): | |
| return (inp - self.shift) / self.scale | |
| class NetLinLayer(nn.Module): | |
| """A single linear layer which does a 1x1 conv.""" | |
| def __init__(self, chn_in, chn_out=1, use_dropout=False): | |
| super(NetLinLayer, self).__init__() | |
| layers = ( | |
| [ | |
| nn.Dropout(), | |
| ] | |
| if (use_dropout) | |
| else [] | |
| ) | |
| layers += [ | |
| nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False), | |
| ] | |
| self.model = nn.Sequential(*layers) | |
| class vgg16(torch.nn.Module): | |
| def __init__(self, requires_grad=False, pretrained=True): | |
| super(vgg16, self).__init__() | |
| vgg_pretrained_features = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features | |
| self.slice1 = torch.nn.Sequential() | |
| self.slice2 = torch.nn.Sequential() | |
| self.slice3 = torch.nn.Sequential() | |
| self.slice4 = torch.nn.Sequential() | |
| self.slice5 = torch.nn.Sequential() | |
| self.N_slices = 5 | |
| for x in range(4): | |
| self.slice1.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(4, 9): | |
| self.slice2.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(9, 16): | |
| self.slice3.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(16, 23): | |
| self.slice4.add_module(str(x), vgg_pretrained_features[x]) | |
| for x in range(23, 30): | |
| self.slice5.add_module(str(x), vgg_pretrained_features[x]) | |
| if not requires_grad: | |
| for param in self.parameters(): | |
| param.requires_grad = False | |
| def forward(self, X): | |
| h = self.slice1(X) | |
| h_relu1_2 = h | |
| h = self.slice2(h) | |
| h_relu2_2 = h | |
| h = self.slice3(h) | |
| h_relu3_3 = h | |
| h = self.slice4(h) | |
| h_relu4_3 = h | |
| h = self.slice5(h) | |
| h_relu5_3 = h | |
| vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"]) | |
| out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3) | |
| return out | |
| def normalize_tensor(x, eps=1e-10): | |
| norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True)) | |
| return x / (norm_factor + eps) | |
| def spatial_average(x, keepdim=True): | |
| return x.mean([2, 3], keepdim=keepdim) |