starflow / misc /lpips.py
leoeric's picture
Initial commit for HF Space - code files only
0b4562b
#
# For licensing see accompanying LICENSE file.
# Copyright (C) 2025 Apple Inc. All Rights Reserved.
#
"""This file contains code for LPIPS.
Reference:
https://github.com/richzhang/PerceptualSimilarity/
https://github.com/CompVis/taming-transformers/blob/master/taming/modules/losses/lpips.py
https://github.com/CompVis/taming-transformers/blob/master/taming/util.py
"""
import os
import hashlib
import requests
from collections import namedtuple
from tqdm import tqdm
import torch
import torch.nn as nn
from torchvision import models
_LPIPS_MEAN = [-0.030, -0.088, -0.188]
_LPIPS_STD = [0.458, 0.448, 0.450]
class LPIPS(nn.Module):
# Learned perceptual metric.
def __init__(self, dist, use_dropout=True):
super().__init__()
self.dist = dist
self.scaling_layer = ScalingLayer()
self.chns = [64, 128, 256, 512, 512] # vg16 features
self.net = vgg16(pretrained=True, requires_grad=False)
self.lin0 = NetLinLayer(self.chns[0], use_dropout=use_dropout)
self.lin1 = NetLinLayer(self.chns[1], use_dropout=use_dropout)
self.lin2 = NetLinLayer(self.chns[2], use_dropout=use_dropout)
self.lin3 = NetLinLayer(self.chns[3], use_dropout=use_dropout)
self.lin4 = NetLinLayer(self.chns[4], use_dropout=use_dropout)
self.load_pretrained()
for param in self.parameters():
param.requires_grad = False
def load_pretrained(self):
VGG_PATH = os.path.join(os.path.join("/root/.cache", "vgg.pth"))
self.load_state_dict(torch.load(VGG_PATH, map_location=torch.device("cpu")), strict=False)
def forward(self, input, target):
# Notably, the LPIPS w/ pre-trained weights expect the input in the range of [-1, 1].
# However, our codebase assumes all inputs are in range of [0, 1], and thus a scaling is needed.
input = input * 2. - 1.
target = target * 2. - 1.
in0_input, in1_input = (self.scaling_layer(input), self.scaling_layer(target))
outs0, outs1 = self.net(in0_input), self.net(in1_input)
feats0, feats1, diffs = {}, {}, {}
lins = [self.lin0, self.lin1, self.lin2, self.lin3, self.lin4]
for kk in range(len(self.chns)):
feats0[kk], feats1[kk] = normalize_tensor(outs0[kk]), normalize_tensor(outs1[kk])
diffs[kk] = (feats0[kk] - feats1[kk]) ** 2
res = [spatial_average(lins[kk].model(diffs[kk]), keepdim=True) for kk in range(len(self.chns))]
val = res[0]
for l in range(1, len(self.chns)):
val += res[l]
return val
class ScalingLayer(nn.Module):
def __init__(self):
super(ScalingLayer, self).__init__()
self.register_buffer("shift", torch.Tensor(_LPIPS_MEAN)[None, :, None, None])
self.register_buffer("scale", torch.Tensor(_LPIPS_STD)[None, :, None, None])
def forward(self, inp):
return (inp - self.shift) / self.scale
class NetLinLayer(nn.Module):
"""A single linear layer which does a 1x1 conv."""
def __init__(self, chn_in, chn_out=1, use_dropout=False):
super(NetLinLayer, self).__init__()
layers = (
[
nn.Dropout(),
]
if (use_dropout)
else []
)
layers += [
nn.Conv2d(chn_in, chn_out, 1, stride=1, padding=0, bias=False),
]
self.model = nn.Sequential(*layers)
class vgg16(torch.nn.Module):
def __init__(self, requires_grad=False, pretrained=True):
super(vgg16, self).__init__()
vgg_pretrained_features = models.vgg16(weights=models.VGG16_Weights.IMAGENET1K_V1).features
self.slice1 = torch.nn.Sequential()
self.slice2 = torch.nn.Sequential()
self.slice3 = torch.nn.Sequential()
self.slice4 = torch.nn.Sequential()
self.slice5 = torch.nn.Sequential()
self.N_slices = 5
for x in range(4):
self.slice1.add_module(str(x), vgg_pretrained_features[x])
for x in range(4, 9):
self.slice2.add_module(str(x), vgg_pretrained_features[x])
for x in range(9, 16):
self.slice3.add_module(str(x), vgg_pretrained_features[x])
for x in range(16, 23):
self.slice4.add_module(str(x), vgg_pretrained_features[x])
for x in range(23, 30):
self.slice5.add_module(str(x), vgg_pretrained_features[x])
if not requires_grad:
for param in self.parameters():
param.requires_grad = False
def forward(self, X):
h = self.slice1(X)
h_relu1_2 = h
h = self.slice2(h)
h_relu2_2 = h
h = self.slice3(h)
h_relu3_3 = h
h = self.slice4(h)
h_relu4_3 = h
h = self.slice5(h)
h_relu5_3 = h
vgg_outputs = namedtuple("VggOutputs", ["relu1_2", "relu2_2", "relu3_3", "relu4_3", "relu5_3"])
out = vgg_outputs(h_relu1_2, h_relu2_2, h_relu3_3, h_relu4_3, h_relu5_3)
return out
def normalize_tensor(x, eps=1e-10):
norm_factor = torch.sqrt(torch.sum(x**2, dim=1, keepdim=True))
return x / (norm_factor + eps)
def spatial_average(x, keepdim=True):
return x.mean([2, 3], keepdim=keepdim)