starflow / app.py
leoeric's picture
Initial commit for HF Space - code files only
0b4562b
raw
history blame
9.78 kB
"""
Hugging Face Space for STARFlow
Text-to-Image and Text-to-Video Generation
This app allows you to run STARFlow inference on Hugging Face GPU infrastructure.
"""
import os
import gradio as gr
import torch
import subprocess
import pathlib
from pathlib import Path
# Check if running on Hugging Face Spaces
HF_SPACE = os.environ.get("SPACE_ID") is not None
# Verify CUDA availability (will be True on HF Spaces with GPU hardware)
if torch.cuda.is_available():
print(f"✅ CUDA available! Device: {torch.cuda.get_device_name(0)}")
print(f" CUDA Version: {torch.version.cuda}")
print(f" PyTorch Version: {torch.__version__}")
else:
print("⚠️ CUDA not available. Make sure GPU hardware is selected in Space settings.")
def generate_image(prompt, aspect_ratio, cfg, seed, checkpoint_file, config_path):
"""Generate image from text prompt."""
if checkpoint_file is None:
return None, "Error: Please upload a checkpoint file."
# Handle Gradio file object
if hasattr(checkpoint_file, 'name'):
checkpoint_path = checkpoint_file.name
else:
checkpoint_path = str(checkpoint_file)
if not os.path.exists(checkpoint_path):
return None, f"Error: Checkpoint file not found at {checkpoint_path}."
if not config_path or not os.path.exists(config_path):
return None, "Error: Config file not found. Please ensure config file exists."
try:
# Create output directory
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Run sampling command
cmd = [
"python", "sample.py",
"--model_config_path", config_path,
"--checkpoint_path", checkpoint_path,
"--caption", prompt,
"--sample_batch_size", "1",
"--cfg", str(cfg),
"--aspect_ratio", aspect_ratio,
"--seed", str(seed),
"--save_folder", "1",
"--finetuned_vae", "none",
"--jacobi", "1",
"--jacobi_th", "0.001",
"--jacobi_block_size", "16"
]
result = subprocess.run(cmd, capture_output=True, text=True, cwd=os.getcwd())
if result.returncode != 0:
return None, f"Error: {result.stderr}"
# Find the generated image
# The sample.py script saves to logdir/model_name/...
# We need to find the most recent output
output_files = list(output_dir.glob("**/*.png")) + list(output_dir.glob("**/*.jpg"))
if output_files:
latest_file = max(output_files, key=lambda p: p.stat().st_mtime)
return str(latest_file), "Success! Image generated."
else:
return None, "Error: Generated image not found."
except Exception as e:
return None, f"Error: {str(e)}"
def generate_video(prompt, aspect_ratio, cfg, seed, target_length, checkpoint_file, config_path, input_image):
"""Generate video from text prompt."""
if checkpoint_file is None:
return None, "Error: Please upload a checkpoint file."
# Handle Gradio file object
if hasattr(checkpoint_file, 'name'):
checkpoint_path = checkpoint_file.name
else:
checkpoint_path = str(checkpoint_file)
if not os.path.exists(checkpoint_path):
return None, f"Error: Checkpoint file not found at {checkpoint_path}."
if not config_path or not os.path.exists(config_path):
return None, "Error: Config file not found. Please ensure config file exists."
# Handle input image
input_image_path = None
if input_image is not None:
if hasattr(input_image, 'name'):
input_image_path = input_image.name
else:
input_image_path = str(input_image)
try:
# Create output directory
output_dir = Path("outputs")
output_dir.mkdir(exist_ok=True)
# Run sampling command
cmd = [
"python", "sample.py",
"--model_config_path", config_path,
"--checkpoint_path", checkpoint_path,
"--caption", prompt,
"--sample_batch_size", "1",
"--cfg", str(cfg),
"--aspect_ratio", aspect_ratio,
"--seed", str(seed),
"--out_fps", "16",
"--save_folder", "1",
"--jacobi", "1",
"--jacobi_th", "0.001",
"--finetuned_vae", "none",
"--disable_learnable_denoiser", "0",
"--jacobi_block_size", "32",
"--target_length", str(target_length)
]
if input_image_path and os.path.exists(input_image_path):
cmd.extend(["--input_image", input_image_path])
else:
cmd.extend(["--input_image", "none"])
result = subprocess.run(cmd, capture_output=True, text=True, cwd=os.getcwd())
if result.returncode != 0:
return None, f"Error: {result.stderr}"
# Find the generated video
output_files = list(output_dir.glob("**/*.mp4")) + list(output_dir.glob("**/*.gif"))
if output_files:
latest_file = max(output_files, key=lambda p: p.stat().st_mtime)
return str(latest_file), "Success! Video generated."
else:
return None, "Error: Generated video not found."
except Exception as e:
return None, f"Error: {str(e)}"
# Create Gradio interface
with gr.Blocks(title="STARFlow - Text-to-Image & Video Generation") as demo:
gr.Markdown("""
# STARFlow: Scalable Transformer Auto-Regressive Flow
Generate high-quality images and videos from text prompts using STARFlow models.
**Note**: You'll need to upload model checkpoints. Check the README for model download links.
""")
with gr.Tabs():
with gr.Tab("Text-to-Image"):
with gr.Row():
with gr.Column():
image_prompt = gr.Textbox(
label="Prompt",
placeholder="a film still of a cat playing piano",
lines=3
)
image_checkpoint = gr.File(
label="Model Checkpoint (.pth file)",
file_types=[".pth"]
)
image_config = gr.Textbox(
label="Config Path",
value="configs/starflow_3B_t2i_256x256.yaml",
placeholder="configs/starflow_3B_t2i_256x256.yaml"
)
image_aspect = gr.Dropdown(
choices=["1:1", "2:3", "3:2", "16:9", "9:16", "4:5", "5:4"],
value="1:1",
label="Aspect Ratio"
)
image_cfg = gr.Slider(1.0, 10.0, value=3.6, step=0.1, label="CFG Scale")
image_seed = gr.Number(value=999, label="Seed", precision=0)
image_btn = gr.Button("Generate Image", variant="primary")
with gr.Column():
image_output = gr.Image(label="Generated Image")
image_status = gr.Textbox(label="Status", interactive=False)
image_btn.click(
fn=generate_image,
inputs=[image_prompt, image_aspect, image_cfg, image_seed, image_checkpoint, image_config],
outputs=[image_output, image_status],
show_progress=True
)
with gr.Tab("Text-to-Video"):
with gr.Row():
with gr.Column():
video_prompt = gr.Textbox(
label="Prompt",
placeholder="a corgi dog looks at the camera",
lines=3
)
video_checkpoint = gr.File(
label="Model Checkpoint (.pth file)",
file_types=[".pth"]
)
video_config = gr.Textbox(
label="Config Path",
value="configs/starflow-v_7B_t2v_caus_480p.yaml",
placeholder="configs/starflow-v_7B_t2v_caus_480p.yaml"
)
video_aspect = gr.Dropdown(
choices=["16:9", "1:1", "4:3"],
value="16:9",
label="Aspect Ratio"
)
video_cfg = gr.Slider(1.0, 10.0, value=3.5, step=0.1, label="CFG Scale")
video_seed = gr.Number(value=99, label="Seed", precision=0)
video_length = gr.Slider(81, 481, value=81, step=80, label="Target Length (frames)")
video_input_image = gr.File(
label="Input Image (optional, for image-to-video)",
file_types=["image"]
)
video_btn = gr.Button("Generate Video", variant="primary")
with gr.Column():
video_output = gr.Video(label="Generated Video")
video_status = gr.Textbox(label="Status", interactive=False)
video_btn.click(
fn=generate_video,
inputs=[video_prompt, video_aspect, video_cfg, video_seed, video_length,
video_checkpoint, video_config, video_input_image],
outputs=[video_output, video_status],
show_progress=True
)
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0", server_port=7860)